Climate Dynamics

, Volume 45, Issue 1–2, pp 175–184 | Cite as

Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events

  • Jagdish Krishnaswamy
  • Srinivas Vaidyanathan
  • Balaji Rajagopalan
  • Mike Bonell
  • Mahesh Sankaran
  • R. S. Bhalla
  • Shrinivas Badiger


The El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are widely recognized as major drivers of inter-annual variability of the Indian monsoon (IM) and extreme rainfall events (EREs). We assess the time-varying strength and non-linearity of these linkages using dynamic linear regression and Generalized Additive Models. Our results suggest that IOD has evolved independently of ENSO, with its influence on IM and EREs strengthening in recent decades when compared to ENSO, whose relationship with IM seems to be weakening and more uncertain. A unit change in IOD currently has a proportionately greater impact on IM. ENSO positively influences EREs only below a threshold of 100 mm day−1. Furthermore, there is a non-linear and positive relationship between IOD and IM totals and the frequency of EREs (>100 mm day−1). Improvements in modeling this complex system can enhance the forecasting accuracy of the IM and EREs.


Dynamic linear models Generalised additive models La Nina Western Ghats Indo-Gangetic plain 



We would like to thank the jointly administered Changing Water Cycle programme of the Ministry of Earth Sciences (Grant Ref: MoES/NERC/16/02/10 PC-11), Government of India and Natural Environment Research Council (Grant Ref: NE/I022450/1), United Kingdom for financial support. We thank the two anonymous reviewers and editor for their helpful comments and suggestions on an earlier version of this article. We dedicate this paper to our colleague and co-author Professor Mike Bonell who passed away on July 11th, 2014.

Supplementary material

382_2014_2288_MOESM1_ESM.pdf (4.6 mb)
Supplementary material 1 (PDF 4,664 kb)


  1. Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1:849–853. doi:10.1038/ngeo357 CrossRefGoogle Scholar
  2. Ajaymohan RS, Rao SA (2008) Indian Ocean dipole modulates the number of extreme rainfall events over india in a warming environment. J Meteorol Soc Jpn Ser II 86:245–252CrossRefGoogle Scholar
  3. Ashfaq M, Shi Y, Tung W, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi:10.1029/2008GL036500 Google Scholar
  4. Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42:273–285. doi:10.1007/s11069-006-9091-0 CrossRefGoogle Scholar
  5. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502CrossRefGoogle Scholar
  6. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155CrossRefGoogle Scholar
  7. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  8. Ashrit RG, Kumar KR, Kumar KK (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys Res Lett 28:1727–1730CrossRefGoogle Scholar
  9. Cai W, Cowan T, Sullivan A (2009) Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys Res Lett 36:L11705CrossRefGoogle Scholar
  10. Calder C, Lavine M, Müller P, Clark JS (2003) Incorporating multiple sources of stochasticity into dynamic population models. Ecology 84(6):1395–1402CrossRefGoogle Scholar
  11. Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Clim Dyn 41:81–103. doi:10.1007/s00382-012-1602-y CrossRefGoogle Scholar
  12. Dawson R, Speight L, Hall J, Djordjevic S, Savic D, Leandro J (2008) Attribution of flood risk in urban areas. J Hydroinformatics 10:275–288CrossRefGoogle Scholar
  13. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  14. Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63:131–143CrossRefGoogle Scholar
  15. Gadgil S, Kumar KR (2006) The Asian monsoon—agriculture and economy. Asian Monsoon. Springer, Berlin Heidelberg, pp 651–683Google Scholar
  16. Ghosh S, Das D, Kao S-C, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat Clim Change 2:86–91. doi:10.1038/nclimate1327 CrossRefGoogle Scholar
  17. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445CrossRefGoogle Scholar
  18. Groisman P, Karl T, Easterling D, Knight R, Jamason P, Hennessy K, Suppiah R, Page C, Wibig J, Fortuniak K, Razuvaev V, Douglas A, Førland E, Zhai P-M (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–283. doi:10.1023/A:1005432803188 CrossRefGoogle Scholar
  19. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469CrossRefGoogle Scholar
  20. Guhathakurta P, Sreejith O, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359–373. doi:10.1007/s12040-011-0082-5 CrossRefGoogle Scholar
  21. Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRefGoogle Scholar
  22. Han W, Meehl GA, Rajagopalan B, Fasullo JT, Hu A, Lin J, Large WG, Wang J, Quan X-W, Trenary LL, Wallcraft A, Shinoda T, Yeager S (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geosci 3:546–550. doi:10.1038/ngeo901 CrossRefGoogle Scholar
  23. Harrison J, West M (1997) Bayesian forecasting and dynamic models. Springer Verlag, New YorkGoogle Scholar
  24. Harrisons PJ, Stevens CF (1976) Bayesian forecasting (with discussion). J Roy Stat Soc Ser B 38:205–247Google Scholar
  25. Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–310. doi:10.1214/ss/1177013604 CrossRefGoogle Scholar
  26. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman & Hall/CRC, FloridaGoogle Scholar
  27. Hennessy KJ, Gregory JM, Mitchell JFB (1997) Changes in daily precipitation under enhanced greenhouse conditions. Clim Dyn 13:667–680. doi:10.1007/s003820050189
  28. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786. doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2
  29. Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the indian ocean SST and Indian Ocean dipole from 1880 to 2004. J Clim 21:2035–2046CrossRefGoogle Scholar
  30. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo J–J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year/’s El Nino. Nat Geosci 3:168–172. doi:10.1038/ngeo760 CrossRefGoogle Scholar
  31. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103:18567–18589. doi:10.1029/97JC01736 CrossRefGoogle Scholar
  32. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2013) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211. doi:10.1007/s00382-012-1317-0 CrossRefGoogle Scholar
  33. Krishnaswamy J, Lavine M, Richter DD, Korfmacher K (2000) Dynamic modeling of long-term sedimentation in the Yadkin River basin. Adv Water Resour 23:881–892. doi:10.1016/S0309-1708(00)00013-0 CrossRefGoogle Scholar
  34. Krishnaswamy J, Halpin PN, Richter DD (2001) Dynamics of sediment discharge in relation to land-use and hydro-climatology in a humid tropical watershed in Costa Rica. J Hydrol 253:91–109. doi:10.1016/S0022-1694(01)00474-7 CrossRefGoogle Scholar
  35. Krishnaswamy J, John R, Joseph S (2014) Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob Change Biol 20:203–215. doi:10.1111/gcb.12362 CrossRefGoogle Scholar
  36. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159CrossRefGoogle Scholar
  37. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119CrossRefGoogle Scholar
  38. Kumar KK, Kamala K, Rajagopalan B, Hoerling M, Eischeid J, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2011) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi:10.1007/s00382-010-0974-0 CrossRefGoogle Scholar
  39. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10. doi:10.1623/hysj.53.1.3 CrossRefGoogle Scholar
  40. Lehmann A, Overton JM, Austin MP (2002) Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers Conserv 11:2085–2092. doi:10.1023/A:1021354914494 CrossRefGoogle Scholar
  41. Luo J-J, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742. doi:10.1175/2009JCLI3104.1 CrossRefGoogle Scholar
  42. Maity R, Nagesh Kumar D (2006) Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño–Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). J Geophys Res Atmos 111:D07104. doi:10.1029/2005JD006539 CrossRefGoogle Scholar
  43. Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81:413–416. doi:10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2 CrossRefGoogle Scholar
  44. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224. doi:10.1007/BF00867461 CrossRefGoogle Scholar
  45. Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ (2011) Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos Environ 45:1328–1336. doi:10.1016/j.atmosenv.2010.11.051 CrossRefGoogle Scholar
  46. Petris G, Petrone S, Campagnoli P (2009) Dynamic linear models. Dyn. Linear Models R. Springer: New York, pp 31–84Google Scholar
  47. Pielke RA, Downton MW (2000) Precipitation and damaging floods: trends in the United States, 1932–97. J Clim 13:3625–3637. doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2 CrossRefGoogle Scholar
  48. Prajeesh AG, Ashok K, Rao DVB (2013) Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Sci Rep 3Google Scholar
  49. Rajagopalan B, Molnar P (2012) Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season. Clim Dyn 39:1543–1557. doi:10.1007/s00382-011-1194-y CrossRefGoogle Scholar
  50. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  51. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707CrossRefGoogle Scholar
  52. Revi A (2008) Climate change risk: an adaptation and mitigation agenda for Indian cities. Environ Urban 20:207–229. doi:10.1177/0956247808089157 CrossRefGoogle Scholar
  53. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. doi:10.1038/43854 Google Scholar
  54. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  55. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205 CrossRefGoogle Scholar
  56. Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci 104:19686–19690. doi:10.1073/pnas.0701728104 CrossRefGoogle Scholar
  57. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. doi:10.1038/nclimate1495 CrossRefGoogle Scholar
  58. Ummenhofer CC, Gupta AS, Li Y, Taschetto AS, England MH (2011) Multi-decadal modulation of the El Nino–Indian monsoon relationship by Indian Ocean variability. Environ Res Lett 6:034006CrossRefGoogle Scholar
  59. Vinayachandran PN, Francis PA, Rao SA (2009) Indian Ocean dipole: Processes and impacts. In: Mukunda, N. (ed) Current trends in science, platinum jubilee special. Indian Academy of Sciences, pp 569–589Google Scholar
  60. Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean dipole. Clim Dyn 42(3–4):991–1005CrossRefGoogle Scholar
  61. Wang P, Baines A, Lavine M, Smith G (2012) Modelling ozone injury to U.S. forests. Environ Ecol Stat 19:461–472. doi:10.1007/s10651-012-0195-2 CrossRefGoogle Scholar
  62. Wang B, Yim S-Y, Lee J-Y, Liu J, Ha K-J (2013) Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim Dyn 42:83–100. doi:10.1007/s00382-013-1769-x
  63. West M, Harrison PJ, Migon HS (1985) Dynamic generalized linear models and bayesian forecasting. J Am Stat Assoc 80:73–83. doi:10.1080/01621459.1985.10477131 CrossRefGoogle Scholar
  64. Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. J Veg Sci 2:587–602. doi:10.2307/3236170 CrossRefGoogle Scholar
  65. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jagdish Krishnaswamy
    • 1
  • Srinivas Vaidyanathan
    • 2
  • Balaji Rajagopalan
    • 3
  • Mike Bonell
    • 4
  • Mahesh Sankaran
    • 5
    • 6
  • R. S. Bhalla
    • 2
  • Shrinivas Badiger
    • 1
  1. 1.Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
  2. 2.Foundation for Ecological Research, Advocacy and Learning (FERAL)VillupuramIndia
  3. 3.Department of Civil, Environmental and Architectural Engineering and Co-operative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  4. 4.Centre for Water Law, Policy and Sciences Under the Auspices of UNESCOUniversity of DundeeDundeeScotland, UK
  5. 5.Ecology and Evolution GroupNational Centre for Biological Sciences, TIFRBangaloreIndia
  6. 6.School of BiologyUniversity of LeedsLeedsUK

Personalised recommendations