Climate Dynamics

, Volume 44, Issue 5–6, pp 1685–1697 | Cite as

Impacts of aerosols on dynamics of Indian summer monsoon using a regional climate model



A regional climate model, RegCM has been utilized to examine the dynamic impacts of large aerosol radiative forcing on the atmospheric temperature and circulation in India during the monsoon (Jun–Sep) seasons of 2009 and 2010. Surface shortwave radiative forcing at the aerosol hot spots is in the range −25 to −60 W m−2 with the larger values observed during the summer monsoon season of 2010 (due to larger dust load) relative to that in 2009. It is important to note that the summer monsoon rainfall in 2010 was declared to be a normal monsoon as against the deficit rain in 2009. Changes in near surface air temperature show a spatial dipole pattern with the aerosol effect dampening out above 500 hPa with a larger change observed for natural aerosols relative to anthropogenic aerosols. The dipole pattern is characteristics of aerosol-induced change. Aerosols tend to strengthen the summer monsoon zonal mean wind at 850 hPa over the hotspots (larger effect in 2009 than in 2010) whereas there is negligible impact on the corresponding mean meridional wind component. This has resulted in a southward shift of the monsoon circulation during 2010 summer, leading to an increase in upward motion over the core monsoon region and thereby increasing the cloud fraction. This may also be facilitated by the aerosol induced heating in the lower troposphere. In 2009, the upward motion is enhanced to the south of the core monsoon region. The dynamic effects imply a positive feedback of the aerosol direct radiative forcing on the summer monsoon circulation over India.


Aerosol forcing Dynamic impact Zonal and meridional circulation Indian monsoon region 



This work is supported by financial grant from Ministry of Earth Sciences, Govt. of India under CTCZ Programme (MoES/CTCZ/16/28/10) through a research project operational at IITD (IITD/IRD/RP02479). The first author is thankful to CSIR for providing scholarship to carry out research work in IIT Delhi. The authors acknowledge ICTP for providing the RegCM4.1 model ( The efforts of PIs of Kanpur AERONET site (Drs. Brent Holben, R. P. Singh and S. N. Tripathi) are acknowledged. We acknowledge the comments by the anonymous reviewers who helped us improving the quality of the original version of the manuscript.


  1. Albrecht BA (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  2. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505CrossRefGoogle Scholar
  3. Cavazos C, Todd MC, Schepanski K (2009) Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J Geophys Res 114:D12109. doi:10.1029/2008JD011078 CrossRefGoogle Scholar
  4. Das S, Dey S, Dash SK, Basil G (2013) Examining mineral dust transport over the Indian subcontinent using the regional climate model, RegCM4.1. Atmos Res 134:64–76CrossRefGoogle Scholar
  5. Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172CrossRefGoogle Scholar
  6. Dash SK, Mamgain A, Pattnayak KC, Giorgi F (2012) Spatial and temporal variations in Indian summer monsoon rainfall and temperature: an analysis based on RegCM3 simulations. Pure Appl Geophys 1–20. doi:10.1007/s00024-012-0567-4
  7. Dey S, Girolamo LD (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging SpectroRadiometer (MISR) data. J Geophys Res 115:D15204. doi:10.1029/2009JD013395 CrossRefGoogle Scholar
  8. Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029 Google Scholar
  9. Dey S, Tripathi SN, Mishra SK (2008) Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India. Geophys Res Lett 35:L03808. doi:10.1029/2007GL032622 Google Scholar
  10. Ganguly D, Jayaraman A, Gadhavi H (2006) Physical and optical properties of aerosols over an urban location in western India: seasonal variabilities. J Geophys Res 111:D24206. doi:10.1029/2006JD007392 CrossRefGoogle Scholar
  11. Ganguly D, Rasch PJ, Wang H, Yoon J (2012) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett 39:L18804. doi:10.1029/2012GL053043 Google Scholar
  12. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  13. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GY, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner F, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  14. Heymsfeld AJ, McFarquhar GM (2001) Microphysics of INDOEX clean and polluted trade cumulus clouds. J Geophys Res D22:28653–28673CrossRefGoogle Scholar
  15. Hsieh WC, Collins WD, Liu Y, Chiang JCH, Shie CL, Caldeira K, Cao L (2013) Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5. Atmos Chem Phys 13:7489–7510CrossRefGoogle Scholar
  16. Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008 CrossRefGoogle Scholar
  17. Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067CrossRefGoogle Scholar
  18. Konwar M, Maheshkumar RS, Kulkarni JR, Freud E, Goswami BN, Rosenfeld D (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res 117:D13204. doi:10.1029/2012JD017585 CrossRefGoogle Scholar
  19. Krishnamurti TN, Martin A, Krishnamurti R, Simon A, Thomas A, Kumar V (2013) Impacts of enhanced CCN on the organization of convection and recent reduced counts of monsoon depressions. Clim Dyn 41:117–134CrossRefGoogle Scholar
  20. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546 CrossRefGoogle Scholar
  21. Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res 101(D14):19411–19432. doi:10.1029/95JD03426 CrossRefGoogle Scholar
  22. Mazumdar AB, Khole M, Devi SS (2010) Weather in India, Monsoon season (June to September 2009). Mausam 61(3):411–454Google Scholar
  23. Mazumdar AB, Khole M, Devi SS (2011) Weather in India, Monsoon season (June to September 2010). Mausam 62(3):463–512Google Scholar
  24. Moorthy KK, Sunilkumar SV, Pillai PS, Parameswaran K, Nair PR, Ahmed YN, Ramgopal K, Narasimhulu N, Reddy RR, Vinoj V, Satheesh SK, Niranjan K, Rao BM, Brahmanandam PS, Saha A, Badarinath KVS, Kiranchand TR, Latha KM (2005) Wintertime spatial characteristics of boundary layer aerosols over peninsular India. J Geophys Res 110:D08207. doi:10.1029/2004JD005520 CrossRefGoogle Scholar
  25. Moorthy KK, Babu SS, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian region. Geophys Res Lett 40:1011–1014. doi:10.1002/grl.50165 CrossRefGoogle Scholar
  26. Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117(D4):1–17CrossRefGoogle Scholar
  27. Qian Y, Giorgi F, Huang Y (2001) Regional simulation of anthropogenic sulfur over east Asia and its sensitivity to model parameters. Tellus 53:171–191CrossRefGoogle Scholar
  28. Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:D08207. doi:10.1029/2007JD008560 Google Scholar
  29. Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmos Environ 49:338–347CrossRefGoogle Scholar
  30. Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA, Collins WD, Conant WC, Dulac F, Heintzenberg J, Heymsfeld AJ, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin D, McFarquhar G, Novakov T, Ogren JA, Podgorny IA, Prather K, Priestley K, Prospero JM, Quinn PK, Rajeev K, Pash P, Rupert S, Sadourny R, Satheesh SK, Shaw GE, Sheridan P, Valero FPJ (2001) Indian Ocean experiment: an integrated assessment of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(D22), 28371–28398Google Scholar
  31. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102:5326–5333CrossRefGoogle Scholar
  32. Remer LA, Kleidman RG, Levy R, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Hongbin YU, Holben BN (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113:D14S07. doi:10.1029/2007JD009661
  33. Satheesh SK, Moorthy KK, Babu SS, Vinoj V, Dutt CBS (2008) Climate implications of large warming by elevated aerosol over India. Geophys Res Lett 35:L19809. doi:10.1029/2008GL034944 CrossRefGoogle Scholar
  34. Satheesh SK, Vinoj V, Krishnamoorthy K (2010) Assessment of aerosol radiative impact over oceanic regions adjacent to Indian subcontinent using multisatellite analysis. Meteorol Adv. doi:10.1155/2010/139186
  35. Sengupta K, Dey S, Sarkar M (2013) Structural evolution of monsoon clouds in the Indian CTCZ. Geophys Res Lett 40:5295–5299CrossRefGoogle Scholar
  36. Singh RP, Dey S, Tripathi SN, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966 CrossRefGoogle Scholar
  37. Sinha P, Mohanty UC, Kar SC, Dash SK, Robertson AW, Tippett MK (2013) Seasonal prediction of the Indian summer monsoon rainfall using canonical correlation analysis of the NCMRWF global model products. Int J Climatol 33:1601–1614CrossRefGoogle Scholar
  38. Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72CrossRefGoogle Scholar
  39. Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113CrossRefGoogle Scholar
  40. Tanre D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971–16988CrossRefGoogle Scholar
  41. Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanawade VP, Chauhan SSS, Sharma M, Reddy RR, Gopal KR, Narasimhulu K, Reddy LSS, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research organization geosphere biosphere programme land campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J Geophys Res 111:D23209. doi:10.1029/2006JD007278
  42. Yue X, Liao H, Wang HJ, Li SL, Tang JP (2011) Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos Chem Phys Discuss 11:1121–1152CrossRefGoogle Scholar
  43. Zakey AS, Solmon F, Giorgi F (2006) Development and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704CrossRefGoogle Scholar
  44. Zanis P (2009) A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling. Ann. Geo. 27:3977–3988CrossRefGoogle Scholar
  45. Zanis P, Ntogras C, Zakey A, Pytharoulis I, Karacostas T (2012) Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim Res 52:267–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations