Climate Dynamics

, Volume 44, Issue 11–12, pp 3281–3301 | Cite as

Analysis of rainfall seasonality from observations and climate models

  • Salvatore Pascale
  • Valerio Lucarini
  • Xue Feng
  • Amilcare Porporato
  • Shabeh ul Hasson
Article

Abstract

Two new indicators of rainfall seasonality based on information entropy, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere–ocean general circulation models. The RE provides a measure of the number of wet months and, for precipitation regimes featuring a distinct wet and dry season, it is directly related to the duration of the wet season. The DSI combines the rainfall intensity with its degree of seasonality and it is an indicator of the extent of the global monsoon region. We show that the RE and the DSI are fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercomparison and ranking. Regions with different precipitation regimes are classified and characterized in terms of RE and DSI. Comparison of different land observational datasets reveals substantial difference in their local representation of seasonality. It is shown that two-dimensional maps of RE provide an easy way to compare rainfall seasonality from various datasets and to determine areas of interest. Models participating to the Coupled Model Intercomparison Project platform, Phase 5, consistently overestimate the RE over tropical Latin America and underestimate it in West Africa, western Mexico and East Asia. It is demonstrated that positive RE biases in a general circulation model are associated with excessively peaked monthly precipitation fractions, too large during the wet months and too small in the months preceding and following the wet season; negative biases are instead due, in most cases, to an excess of rainfall during the premonsoonal months.

Keywords

Rainfall seasonality Information entropy Hydrological cycle CMIP5 models 

References

  1. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232CrossRefGoogle Scholar
  2. Becker E, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1902–present. Earth Syst Sci Data 71:71–99CrossRefGoogle Scholar
  3. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  4. Bolvin DT, Huffman RFAGJ, Nelkin EJ, Poutiainen JP (2009) Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J Appl Meteorol Climatol 48(9):1843–1857CrossRefGoogle Scholar
  5. Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287CrossRefGoogle Scholar
  6. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449CrossRefGoogle Scholar
  7. Camargo S (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26:9880–9902CrossRefGoogle Scholar
  8. Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5. J Clim 26:3803–3822CrossRefGoogle Scholar
  9. Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased \(\text{ CO }_2\) levels on monsoons. Clim Dyn 37:83–101CrossRefGoogle Scholar
  10. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005CrossRefGoogle Scholar
  11. Chou C, Chiang JCH, Lan CW, Chung CH, Liao YC, Lee CJ (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6:263–267. doi:10.1038/NGEO1744 CrossRefGoogle Scholar
  12. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20,709. doi:10.1029/2008GL035694 CrossRefGoogle Scholar
  13. Cook BI, Seager R (2013) The response of the north american monsoon to increased greenhouse gas forcing. J Geophys Res 118:1690–1699Google Scholar
  14. Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, LondonCrossRefGoogle Scholar
  15. Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Water Resour Res 35(6):1853–1867CrossRefGoogle Scholar
  16. Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16CrossRefGoogle Scholar
  17. Feng X, Porporato A, Rodriguz-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change. doi:10.1038/nclimate1907
  18. Fisher N, Lewis T, Embleton BJJ (1993) Statistical analysis of spherical data. Cambridge University Press, CambridgeGoogle Scholar
  19. Frierson DMW, Hwang YT, Fuckar NS, Seager R, Kang SM, Donohoe A, Maroon EA, Liu X, Battisti DS (2013) Contribution of ocean overturning circulation to tropical rainfall peak in the northern hemisphere. Nat Geosci 6:940–944CrossRefGoogle Scholar
  20. Goswami BN, Krishnamurthy V, Annamalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633CrossRefGoogle Scholar
  21. Guilyardi E, Balaji V, Lawrence B, Callaghan S, Deluca C, Denvil S, Lautenschlager M, Morgan M, Murphy S, Taylor KE (2013) Documenting climate models and their simulations. Bull Am Meteorol Soc 94:623–627CrossRefGoogle Scholar
  22. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol. doi:10.1038/NGEO1744
  23. Harvey BJ, Shaffrey LC, Woolings TJ, Zappa G, Hodges KI (2012) How large are projected 21st century storm track changes? Geophys Res Lett 39(L18):707. doi:10.1029/2012GL052873 Google Scholar
  24. Hasson S, Lucarini V, Pascale S (2013) Hydrologycal cycle over south and southeast asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217CrossRefGoogle Scholar
  25. Hasson S, Lucarini V, Pascale S, Böhner J (2014) Seasonality of the hydrologycal cycle in major south and southeast asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 5:67–87. doi:10.5194/esd-5-67-2014
  26. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  27. Huang P, Xie SP, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361CrossRefGoogle Scholar
  28. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation records: GPCP version 2.1. Geophys Res Lett 36(17):L17808CrossRefGoogle Scholar
  29. Hwang YT, Frierson DMW (2013a) Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean. PNAS 110(13):4935–4940. doi:10.1073/pnas.1213302110
  30. Hwang YT, Frierson DMW (2013b) Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean: supplementary material. PNAS. doi:10.1073/pnas.1213302110/-/DCSupplemental
  31. IPCC (2013) IPCC fifth assessment report: working group I report “The Physical Science Basis”. Cambridge University Press, CambridgeGoogle Scholar
  32. Kajikawa Y, Wang B, Yang J (2010) A multi-time scale Australian monsoon index. Int J Climatol 30:1114–1120CrossRefGoogle Scholar
  33. Kang SM, Lu J (2012) Expansion of the hadley cell under global warming: winter versus summer. J Clim 25:83878393Google Scholar
  34. Kelley C, Ting M, Seager R, Kushnir Y (2012) Mediterranen precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys Res Lett 39(L21):703. doi:10.1029/2012GL053416 Google Scholar
  35. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357CrossRefGoogle Scholar
  36. Kitoh A, Endo H, Kumar KK, Cavalcanti IFA (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:1–13Google Scholar
  37. Knutti R (2010) The end of model democracy? Clim Change 102:395–404CrossRefGoogle Scholar
  38. Konar M, Muneepeerakul R, Azaele S, Bertuzzo E, Rinaldo A, Rodriguez-Iturbe I (2010) Potential impacts of precipitation change on large-scale patterns of tree diversity. Water Resour Res 46(W11):515. doi:10.1029/2010WR009384 Google Scholar
  39. Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119CrossRefGoogle Scholar
  40. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res 115(D10):101. doi:10.1029/2009JD012882 Google Scholar
  41. Liepert BG, Lo F (2013) CMIP5 updates of “inter-model variability and biases of the global water cycle in CMIP3 coupled climete models”. Environ Res Lett 8. doi:10.1088/1748-9326/8/2/029401
  42. Lin JL (2007) The double-itcz problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  43. Lucarini V, Danihlik R, Kriegerova I, Speranza A (2008) Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J Geophys Res 113:D09,107. doi:10.1029/2007JD009167 Google Scholar
  44. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) IPCC climate change 2007: the physical science basis. In: Solomon S et al (eds) Cambridge University Press, pp 747–846Google Scholar
  45. Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res 119:1695–1707. doi:10.1002/2013JD021152 Google Scholar
  46. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  47. Noake K, Polson D, Hegerl G, Zhang X (2012) Changes in seasonal land precipitation during the latter twentieth-century. Geophys Res Lett 39(L03):706. doi:10.1029/2011GL050405 Google Scholar
  48. Rathmann NM, Yang S, Kaas E (2013) Tropical cyclones in enhanced resolution CMIP5 experiments. Clim Dyn. doi:10.1007/s00382-013-1818-5 Google Scholar
  49. Rohr T, Manzoni S, Feng X, Menezes RSC, Porporato A (2013) Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J Geophys Res Biogeosci 118:1156–1167. doi:10.1002/jgrg.20091 CrossRefGoogle Scholar
  50. Sarojini BB, Stott PA, Black E, Polson D (2012) Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. Geophys Res Lett 39(L21):706. doi:10.1029/2012GL053373 Google Scholar
  51. Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92(D8):9693–9714CrossRefGoogle Scholar
  52. Schneider U, Becker E, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol. doi:10.1007/s00704-013-0860-x
  53. Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668CrossRefGoogle Scholar
  54. Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Projections of declining surface-water availability for the southwestern United States. Nat Clim Change 3:482–486CrossRefGoogle Scholar
  55. Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351CrossRefGoogle Scholar
  56. Shukla J, Paolino DA (1983) The Southern Oscillation and long range foresting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837CrossRefGoogle Scholar
  57. Sillmann J, Kharin VV, Zhang Z, Zwiers FW, Bronough D (2013) Climate extremes indecision the CMIP5 multimodel ensembles: part I. Model evaluation in the present climate. J Geophys Res 118(4):1716–1733Google Scholar
  58. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744CrossRefGoogle Scholar
  59. Swart NC, Fyfe JC (2012) Observed and simulated changes in the southern hemisphere surface westerly wind-stress. Geophys Res Lett 39(L16):711. doi:10.1029/2012GL052810 Google Scholar
  60. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  61. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  62. Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulations. J Clim 13:3969–3993CrossRefGoogle Scholar
  63. Turner A, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595CrossRefGoogle Scholar
  64. Vecchi GA, Soden BJ (2007) Global warming and the weakening of tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  65. Vellinga M, Arribas A, Graham R (2013) Seasonal forecasts for regional onset of the west african monsoon. Clim Dyn 40(11):3047–3070CrossRefGoogle Scholar
  66. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  67. Walsh RPD, Lawler DM (1981) Rainfall seasonality. Weather 36:201–208CrossRefGoogle Scholar
  68. Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183CrossRefGoogle Scholar
  69. Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638CrossRefGoogle Scholar
  70. Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955CrossRefGoogle Scholar
  71. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926CrossRefGoogle Scholar
  72. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  73. Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214CrossRefGoogle Scholar
  74. Zappa G, Shaffrey LC, Hodges KI (2013) The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J Clim 26(15):5379–5396. doi:10.1175/JCLI-D-12-00501.1 CrossRefGoogle Scholar
  75. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Stott PA, Nosawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Salvatore Pascale
    • 1
  • Valerio Lucarini
    • 1
    • 2
  • Xue Feng
    • 3
  • Amilcare Porporato
    • 3
  • Shabeh ul Hasson
    • 1
  1. 1.Meteorologisches Institute, Center for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany
  2. 2.Department of Mathematics and StatisticsUniversity of ReadingReadingUK
  3. 3.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations