Climate Dynamics

, Volume 44, Issue 1–2, pp 457–473 | Cite as

Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26°N

  • Adam T. BlakerEmail author
  • Joël J.-M. Hirschi
  • Gerard McCarthy
  • Bablu Sinha
  • Sarah Taws
  • Robert Marsh
  • Andrew Coward
  • Beverly de Cuevas


Observations of the Atlantic meridional overturning circulation (AMOC) by the RAPID 26°N array show a pronounced minimum in the northward transport over the winter of 2009/10, substantially lower than any observed since the initial deployment in April 2004. It was followed by a second minimum in the winter of 2010/2011. We demonstrate that ocean models forced with observed surface fluxes reproduce the observed minima. Examining output from five ocean model simulations we identify several historical events which exhibit similar characteristics to those observed in the winter of 2009/10, including instances of individual events, and two clear examples of pairs of events which happened in consecutive years, one in 1969/70 and another in 1978/79. In all cases the absolute minimum, associated with a short, sharp reduction in the Ekman component, occurs in winter. AMOC anomalies are coherent between the Equator and 50°N and in some cases propagation attributable to the poleward movement of the anomaly in the wind field is observed. We also observe a low frequency (decadal) mode of variability in the anomalies, associated with the North Atlantic Oscillation (NAO). Where pairs of events have occurred in consecutive years we find that atmospheric conditions during the first winter correspond to a strongly negative Arctic Oscillation (AO) index. Atmospheric conditions during the second winter are indicative of a more regional negative NAO phase, and we suggest that this persistence is linked to re-emergence of sea surface temperature anomalies in the North Atlantic for the events of 1969/70 and 2009/10. The events of 1978/79 do not exhibit re-emergence, indicating that the atmospheric memory for this pair of events originates elsewhere. Observation of AO patterns associated with cold winters over northwest Europe may be indicative for the occurrence of a second extreme winter over northwest Europe.


AMOC Minimum Events RAPID Model Observations SST anomalies Re-emergence 



This work was supported by the NERC funded RAPID-WATCH project VALOR (NE/G007772/1) and was also part of the DRAKKAR project. Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from Sarah Taws was funded by a NERC Quota Studentship, with added support from the UK Met Office. NCEP Reanalysis Derived data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at NAO Index Data was provided by the Climate Analysis Section, NCAR, Boulder, USA. We thank two anonymous reviewers for their useful and constructive comments.


  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime mid-latitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Baehr J, Haak H, Alderson S, Cunningham SA, Jungclaus JH, Marotzke J (2007) Timely detection of changes in the meridional overturning circulation at 26N in the Atlantic. J Clim 20(23):5827–5841CrossRefGoogle Scholar
  3. Baehr J, Cunningham SA, Haak H, Heimbach P, Kanzow T, Marotzke J (2009) Observed and simulated daily variability of the meridional overturning circulation at \(26.5\,^{\circ }\text{ N }\) in the Atlantic. Ocean Sci Discuss 5:575–589CrossRefGoogle Scholar
  4. Balan Sarojini B, Gregory J, Tailleux R, Bigg GR, Blaker AT, Cameron DR, Edwards NR, Megann AP, Shaffrey L, Sinha B (2011) High frequency variability of the Atlantic meridional overturning circulation. Ocean Sci 7(4):471–486. doi: 10.5194/os-7-471-2011 CrossRefGoogle Scholar
  5. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Sommer JL, Beckmann A, Biastoch A, Bning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, de Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567CrossRefGoogle Scholar
  6. Bellucci A, Gualdi S, Scoccimarro E, Navarra A (2008) NAO-ocean circulation interactions in a coupled general circulation model. Clim Dyn 31(7–8):759–777CrossRefGoogle Scholar
  7. Blaker AT, Hirschi JJM, Sinha B, de Cuevas BA, Alderson SG, Coward AC, Madec G (2012) Large near-inertial oscillations of the Atlantic meridional overturning circulation. Ocean Model 42:50–56. doi: 10.1016/j.ocemod.2011.11.008 CrossRefGoogle Scholar
  8. Brodeau L, Barnier B, Penduff T, Treguier AM, Gulev S (2010) An ERA 40 based atmospheric forcing for global ocean circulation models. Ocean Model 31(3–4):88–104CrossRefGoogle Scholar
  9. Broeker WS (1987) The biggest chill. Nat Hist Mag 97:74–82Google Scholar
  10. Bryden H, King BA, McCarthy GD, McDonagh EL (2014) Impact of a 30 % reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci Discuss 11:789–810CrossRefGoogle Scholar
  11. Buchan J, Hirschi JJM, Blaker AT, Sinha B (2014) Influence of North Atlantic sea surface temperature anomalies on the NAO in December 2010. Mon Weather Rev 142:922–932CrossRefGoogle Scholar
  12. Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Clim 20:3510–3526. doi: 10.1175/JCLI4202.1 CrossRefGoogle Scholar
  13. Chidichimo MP, Kanzow T, Cunningham SA, Johns WE, Marotzke J (2010) The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5N. Ocean Sci 6:475–490CrossRefGoogle Scholar
  14. Ciasto LM, Alexander MA, Deser C, England MH (2011) On the persistence of cold-season SST anomalies associated with the annular modes. J Clim 24(10):2500–2515CrossRefGoogle Scholar
  15. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  16. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic oscillation. J Clim 18(23):4955–4969CrossRefGoogle Scholar
  17. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  18. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767CrossRefGoogle Scholar
  19. Deshayes J, Treguier AM, Barnier B, Lecointre A, Sommer JL, Molines JM, Penduff T, Bourdalle-Badie R, Drillet Y, Garric G, Benshilla R, Madec G, Biastoch A, Boning CW, Scheinert M, Coward AC, Hirschi JJM (2013) Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable. Geophys Res Lett 40(12):3069–3073. doi: 10.1002/grl.50534 CrossRefGoogle Scholar
  20. Dickson RR, Brown J (1994) The production of North Atlantic deep water: sources, rates, and pathways. J Geophys Res Oceans 99(C6):12,319–12,341. doi: 10.1029/94JC00530 CrossRefGoogle Scholar
  21. DRAKKAR Group (2007) Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exch 12(3):8–10Google Scholar
  22. Duchez A, Frajka-Williams E, Castro N, Hirschi JJM, Coward A (2014a) Seasonal to interannual variability in density around the Canary Islands and their influence on the Atlantic meridional overturning circulation at 26N. J Gephys Res Oceans 119. doi: 10.1002/2013JC009416
  23. Duchez A, Hirschi JJM, Cunningham SA, Blaker AT, Bryden HL, de Cuevas BA, Atkinson CP, McCarthy GD, Frajka-Williams E, Rayner D, Smeed D, Mizielinski MS (2014b) A new index for the Atlantic Meridional overturning circulation at 26N. J Clim. doi: 10.1175/JCLI-D-13-00052.1
  24. Fletcher CG, Hardiman SC, Kushnir PJ (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222CrossRefGoogle Scholar
  25. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457. doi: 10.1038/35044048 CrossRefGoogle Scholar
  26. Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim Dyn 40(9–10):2311–2330. doi: 10.1007/s00382-012-1333-0 CrossRefGoogle Scholar
  27. Gong G, Entekhabi D, Cohen J (2003) Modeled Northern Hemisphere Winter Climate Response to Realistic Siberian Snow Anomalies. Journal of Climate 16:3917–3931. doi: 10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2
  28. Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res 109(D06107). doi: 10.1029/2003JD004160
  29. Grist JP, Josey SA, Marsh R, Good SA, Coward AC, de Cuevas BA, Alderson SG, New AL, Madec G (2010) The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn 60(4):771–790. doi: 10.1007/s10236-010-0292-4 CrossRefGoogle Scholar
  30. Grist JP, Josey SA, Marsh R (2012) Surface estimates of the Atlantic overturning in density space in an eddy-permitting ocean model. J Geophys Res 117(C06012). doi: 10.1029/2011JC007752
  31. Heape R, Hirschi JJM, Sinha B (2013) Asymmetric response of European pressure and temperature anomalies to NAO positive and NAO negative winters. Weather 68(3):73–80. doi: 10.1002/wea.2068 CrossRefGoogle Scholar
  32. Hermanson L, Eade R, Robinson NH, Dunstone NJ, Andrews MB, Knight JR, Scaife AA, Smith DM (2014) Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys Res Lett. doi: 10.1002/2014GL060420
  33. Hirschi J, Marotzke J (2007) Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr 37:743–763CrossRefGoogle Scholar
  34. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7):1413. doi: 10.1029/2002GL016776 CrossRefGoogle Scholar
  35. Hirschi J, Blaker AT, Sinha B, de Cuevas B, Alderson SG, Coward AC, Madec G (2013) Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci 9:3191–3238. doi: 10.5194/osd-9-3191-2012 CrossRefGoogle Scholar
  36. Hirschi JJM, Sinha B (2007) Negative NAO and cold Eurasian winters: how exceptional was the winter of 1962/1963? Weather 62(2):43–48. doi: 10.1002/wea.34 CrossRefGoogle Scholar
  37. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  38. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles: historical and real-time data. J Mar Syst 65:158–175. doi: 10.1016/j.jmarsys.2005.11.019 CrossRefGoogle Scholar
  39. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen C, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Clim 24(10):2429–2449. doi: 10.1175/2010JCLI3997.1
  40. Jourdan D, Balopoulos E, Garcia-Fernandez M, Maillard C (1998) Objective analysis of temperature and salinity historical data set over the mediterranean basin. Technical report IEEEGoogle Scholar
  41. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  42. Kanzow T, Johnson HL, Marshall DP, Cunningham SA, Hirschi JJM, Mujahid A, Bryden HL, Johns WE (2009) Basinwide integrated volume transports in an eddy-filled ocean. J Phys Oceanogr 39:3091–3110. doi: 10.1175/2009JPO4185.1 CrossRefGoogle Scholar
  43. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Barringer MO, Meinen CS, Chidichimo MP, Atkinson CP, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5N. J Clim 23:5678–5698CrossRefGoogle Scholar
  44. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(RG2001). doi: 10.1029/2004RG000166
  45. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Technical Report TN-460+STR(NCAR)Google Scholar
  46. Large WG, Yeager SG (2008) The global climatology of an interannually varying air–sea flux data set. Clim Dyn. doi: 10.1007/s00382-008-0441-3
  47. Levitus S, Conkright M, Boyer TP, O’Brian T, Antonov J, Stephens C, Johnson LSD, Gelfeld R (1998) World ocean database 1998. Technical report NESDIS 18, NOAA AtlasGoogle Scholar
  48. L’Heureux M, Butler A, Jha B, Kumar A, Wang W (2010) Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys Res Lett 37(L10704). doi: 10.1029/2010GL043338
  49. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562CrossRefGoogle Scholar
  50. Luo D, Zhu Z, Ren R, Zhong L, Wang C (2010) Spatial pattern and zonal shift of the North Atlantic oscillation. Part I: a dynamical interpretation. J Atmos Sci 67:2805–2826. doi: 10.1175/2010JAS3345.1 CrossRefGoogle Scholar
  51. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), France 27:1288–1619Google Scholar
  52. Maidens A, Arribas A, Scaife AA, Maclachlan C, Peterson D, Knight J (2013) The influence of surface forcings on prediction of the North Atlantic oscillation regime of Winter 2010–2011. Mon Weather Rev 141(11):3801–3813. doi: 10.1175/MWR-D-13-00033.1
  53. Marshall J, Johnson H, Goodman J (2000) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Clim 14:1399–1421. doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2
  54. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys Res Lett 39(L19609). doi: 10.1029/2012GL052933
  55. NCAR (2012a) The climate data guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based).
  56. NCAR (2012b) The climate data guide: Hurrell wintertime SLP-based Northern Annular Mode (NAM) Index.
  57. Osborn TJ (2011) Winter 2009/2010 temperatures and a record breaking North Atlantic Oscillation index. Weather 66:19–21CrossRefGoogle Scholar
  58. Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the influence of siberian snow on the northern annular mode. J Clim 25:592–607. doi: 10.1175/JCLI-D-11-00038.1 CrossRefGoogle Scholar
  59. Quartly GD, de Cuevas BA, Coward AC (2013) Mozambique channel eddies in GCMs: a question of resolution and slippage. Ocean Model 63:56–67CrossRefGoogle Scholar
  60. Rayner D, Hirschi JJM, Kanzow T, Johns WE, Wright PG, Frajka-Williams E, Bryden HL, Meinen CS, Barringer MO, Marotzke J, Beal LM, Cunningham SA (2011) Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II Top Stud Oceanogr 58(17–18):1744–1753CrossRefGoogle Scholar
  61. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  62. Rhines PB, Häkkinen S (2003) Is the oceanic heat transport in the North Atlantic irrelevant to the climate in Europe? ASOF Newsl 1:13–17Google Scholar
  63. Sevellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J Clim 26:2160–2183. doi: 10.1175/JCLI-D-11-00023.1 CrossRefGoogle Scholar
  64. Sevellec F, Hirschi JJM, Blaker AT (2013) On the super-inertial resonance of the Atlantic meridional overturning circulation. J Phys Oceanogr 43:2661–2672. doi: 10.1175/JPO-D-13-092.1 CrossRefGoogle Scholar
  65. Sinha B, Blaker AT, Hirschi JJM, Bonham S, Brand M, Josey S, Smith R, Marotzke J (2012) Mountain ranges favour vigorous Atlantic meridional overturning. Geophys Res Lett 39(L02705):7. doi: 10.1029/2011GL05048
  66. Sinha B, Topliss B, Blaker AT, Hirschi JJM (2013) A numerical model study of the effects of interannual timescale wave propagation on the predictability of the Atlantic meridional overturning circulation. J Geophys Res. doi: 10.1029/2012JC008334
  67. Sonnewald M, Hirschi JJM, Marsh R (2013) Oceanic dominance of interannual subtropical North Atlantic heat content variability. Ocean Sci Discuss 10:27–53. doi: 10.5194/osd-10-27-2013 CrossRefGoogle Scholar
  68. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  69. Taws SL (2013) Seasonal re-emergence of sea surface temperature anomalies in the North Atlantic: an observational and ocean model study. PhD Thesis, University of SouthamptonGoogle Scholar
  70. Taws SL, Marsh R, Wells NC, Hirschi JJM (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett 38(L20601). doi: 10.1029/2011GL048978
  71. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  72. Timmerman A, Goosse H, Madec G, Fichefet T, Ethe C, Dulire V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea-ice ocean model. Ocean Model 8:175–201CrossRefGoogle Scholar
  73. U.S. Department of Commerce (2006) U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center: 2-minute Gridded Global Relief Data (ETOPO2v2).
  74. Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms-one phenomenon. Q J R Meterol Soc 126(564):791–805. doi: 10.1002/qj.49712656402 CrossRefGoogle Scholar
  75. Zhao J, Johns W (2014) Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5N. J Geophys Res Oceans 119:2403–2419. doi: 10.1002/2013JC009407 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Adam T. Blaker
    • 1
    Email author
  • Joël J.-M. Hirschi
    • 1
  • Gerard McCarthy
    • 1
  • Bablu Sinha
    • 1
  • Sarah Taws
    • 2
  • Robert Marsh
    • 2
  • Andrew Coward
    • 1
  • Beverly de Cuevas
    • 1
  1. 1.National Oceanography CentreSouthamptonUK
  2. 2.University of Southampton, National Oceanography CentreSouthamptonUK

Personalised recommendations