Climate Dynamics

, Volume 45, Issue 3–4, pp 583–601 | Cite as

Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections?

  • H. Dayan
  • T. Izumo
  • J. VialardEmail author
  • M. Lengaigne
  • S. Masson


This paper aims at identifying oceanic regions outside the tropical Pacific, which may influence the El Niño Southern Oscillation (ENSO) through interannual modulation of equatorial Pacific winds. An Atmospheric General Circulation Model (AGCM) 7-members ensemble experiment forced by climatological sea surface temperature (hereafter, SST) in the tropical Pacific Ocean and observed interannually varying SST elsewhere produces ensemble-mean equatorial zonal wind stress interannual anomalies (ZWSA) over the equatorial Pacific. These ZWSA are largest during boreal winter in the western Pacific, and induce a ~0.5 °C response in the central Pacific during the following spring in a simple ocean model, that weakly but significantly correlates with the following ENSO peak amplitude. When correlated with global SST, the residual western equatorial Pacific ZWSA yield SST patterns that are reminiscent of ENSO teleconnections in the Indian, North and South Pacific, and Atlantic Oceans. We further design 20-members ensemble sensitivity experiments forced by typical SST patterns of the main climate modes for each of these regions, in order to identify regions that influence equatorial Pacific ZWSA most. In our experiments, only the Indian Ocean Basin-wide SST warming in late boreal winter produces a statistically significant ZWSA in the western equatorial Pacific, resulting in a weak but significant ~0.35 °C SST response in the central Pacific (i.e. ~35 % of the observed standard deviation) during the following spring, the season when the Bjerkness coupled feedback is particularly efficient. This paper hence agrees with previous studies, which suggest that ENSO-induced basin-wide SST signals in the Indian Ocean may contribute to the phase transition of ENSO. Our results suggest that studies exploring external influences on ENSO should adopt a global approach rather than focus on a specific region. Designing coupled model simulations would also allow investigating air–sea interactions-mediated teleconnection mechanisms, which we can’t reproduce in our forced AGCM framework.


El Niño Southern Oscillation External forcing Atmospheric teleconnections Indian Ocean 



Hugo Dayan is funded by a PhD grant of Ministère de l’Enseignement Supérieur et de la Recherche and by the Institut National des Sciences de l’Univers (INSU) LEFE program. Jérôme Vialard, Takeshi Izumo and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Sébastien Masson is funded by the Conseil National des Astronomes et Physiciens (CNAP). GPCP data are provided by the NOAA/OAR/ESRL PSD.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P–P, Janowiak J et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167CrossRefGoogle Scholar
  2. Alexander M, Vimont D (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 2885–2901. doi: 10.1175/2010JCLI3205.1
  3. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231CrossRefGoogle Scholar
  4. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño*. J Clim 18:302–319CrossRefGoogle Scholar
  5. Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean–Indonesian Seas on El Niño characteristics. J Clim 23:3933–3952CrossRefGoogle Scholar
  6. Behera SK, Yamagata T (2003) Influence of the Indian Ocean Dipole on the Southern Oscillation. J Meteorol Soc Jpn 81:169–177CrossRefGoogle Scholar
  7. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific 1. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  8. Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611. doi: 10.1002/grl.50229 CrossRefGoogle Scholar
  9. Burgers G (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32(13):L13706. doi: 10.1029/2005GL022951 CrossRefGoogle Scholar
  10. Cai W, Qiu Y (2013) An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. J Clim 26:2880–2890CrossRefGoogle Scholar
  11. Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res 104(C7):15803. doi: 10.1029/1999JC900081 CrossRefGoogle Scholar
  12. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic ocean from thermodynamic air–sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  13. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–ocean variability*. J Clim 17:4143–4158CrossRefGoogle Scholar
  14. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399. doi: 10.1029/2002GL016673 CrossRefGoogle Scholar
  15. Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi: 10.1007/s00382-013-1946-y Google Scholar
  16. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  17. Deser C, Wallace JM (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16:57–72CrossRefGoogle Scholar
  18. Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143. doi: 10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  19. Ding H, Keenlyside N, Latif M (2012) Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38:1965–1972CrossRefGoogle Scholar
  20. Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean Warming*. J Clim 22:2023–2038CrossRefGoogle Scholar
  21. Federov AV, Brown JN (2009) Equatorial waves. In: Steele J (ed) Encyclopedia of ocean sciences, 2nd edn. Academic Press, New York, pp 3679–3695Google Scholar
  22. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr Phys Atm 53:35–62Google Scholar
  23. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part ii application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305. doi: 10.1111/j.2153-3490.1977.tb00740.x CrossRefGoogle Scholar
  24. Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi: 10.1029/2011GL050520 CrossRefGoogle Scholar
  25. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  26. Glantz MH (2001) Currents of change: El Niño’s impact on climate and society. Cambridge University Press, CambridgeGoogle Scholar
  27. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science (New York, NY) 238(4827):657–659. doi: 10.1126/science.238.4827.657 CrossRefGoogle Scholar
  28. Ham Y-G, Kug J-S, Park J-Y, Jin F–F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116. doi: 10.1038/ngeo1686 CrossRefGoogle Scholar
  29. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon Weather Rev 109(4):813–829CrossRefGoogle Scholar
  30. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi: 10.1038/ngeo760 CrossRefGoogle Scholar
  31. Izumo T, Lengaigne M, Vialard J, Luo J–J, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42(1–2):291–310CrossRefGoogle Scholar
  32. Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567CrossRefGoogle Scholar
  33. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  34. Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801CrossRefGoogle Scholar
  35. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics parameterization developed for the ECHAM4 general circulation model. Clim Dyn 12:557–572CrossRefGoogle Scholar
  36. Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52CrossRefGoogle Scholar
  37. Martin-Rey M, Polo I, Rodriguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina 76(S1):2012. doi: 10.3989/scimar.03610.19A CrossRefGoogle Scholar
  38. McCreary J (1976) Eastern tropical ocean response to changing wind systems: with application to El Niño. J Phys Oceanogr 6:632–645CrossRefGoogle Scholar
  39. McGregor S, Holbrook NJ, Power SB (2009) The response of a stochastically forced ENSO model to observed off-equatorial wind-stress forcing. J Clim 22:2512–2525CrossRefGoogle Scholar
  40. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (New York, NY) 314:1740–1745CrossRefGoogle Scholar
  41. Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158CrossRefGoogle Scholar
  42. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated k-correlated model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  43. Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306CrossRefGoogle Scholar
  44. Newman M, Compo G, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  45. Niiler PP, Kraus EB (1977) One-dimensional models of the upper ocean. In: Kraus EB (ed) Modeling and prediction of the upper layers of the ocean. Pergamon Press, New York, pp 143–172Google Scholar
  46. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  47. Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech Memo 206, 41 ppGoogle Scholar
  48. Ohba M, Ueda H (2005) Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA 1:89–92. doi: 10.2151/sola.2005-024 CrossRefGoogle Scholar
  49. Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85:335–348CrossRefGoogle Scholar
  50. Ohba M, Watanabe M (2012) Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25(9):3321–3335CrossRefGoogle Scholar
  51. Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486–1489. doi: 10.1126/science.274.5292.1486 CrossRefGoogle Scholar
  52. Reverdin G, Cadet D, Gutzler D (1986) Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Q J R Meteorol Soc 112:43–46CrossRefGoogle Scholar
  53. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496. doi: 10.1175/2007JCLI1824.1 CrossRefGoogle Scholar
  54. Rodríguez-Fonseca B, Polo I, García-Serrano J et al (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705CrossRefGoogle Scholar
  55. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, 127 ppGoogle Scholar
  56. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM 5. PART II: sensitivity of simulated climate to horizontal and vertical resolution. MPI Report No. 354, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  57. Saji NH, Goswami BN, Viayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  58. Schulz J-P, Dümenil L, Polcher J (2001) On the land surface–atmosphere coupling and its impact in a single-column atmosphere model. J Appl Meteorol 40:642–663CrossRefGoogle Scholar
  59. Simmons AJ, Burridge DM, Jarraud M, Girard C, Wergen W (1989) The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution. Meteorol Atmos Phys 40(1–3):28–60. doi: 10.1007/BF01027467 CrossRefGoogle Scholar
  60. Spencer H (2004) Role of the atmosphere in seasonal phase locking of El Nino. Geophys Res Lett 31:L24104. doi: 10.1029/2004GL021619 CrossRefGoogle Scholar
  61. Spencer H, Slingo JM, Davey MK (2004) Seasonal predictability of ENSO teleconnections: the role of the remote ocean response. Clim Dyn 22:511–526 Google Scholar
  62. Terray P (2010) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36:2171–2199CrossRefGoogle Scholar
  63. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800CrossRefGoogle Scholar
  64. Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942CrossRefGoogle Scholar
  65. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319. doi: 10.1007/BF00204745 CrossRefGoogle Scholar
  66. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  67. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden M (2001) A model study of the oceanic mechanisms affecting the equatorial SST during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  68. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  69. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO*. J Clim 16:2668–2675CrossRefGoogle Scholar
  70. Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality*. J Clim 22(3):518–534. doi: 10.1175/2008JCLI2220.1 CrossRefGoogle Scholar
  71. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon Weather Rev 109(4):784–812CrossRefGoogle Scholar
  72. Wang W, McPhaden MJ (2000) The surface-layer heat balance in the equatorial Pacific Ocean. Part II: interannual variability*. J Phys Oceanogr 30(11):2989–3008CrossRefGoogle Scholar
  73. Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of the Philippine Sea anticyclone during El Nino. Geophys Res Lett 29. doi: 10.1029/2001GL014318
  74. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar
  75. Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea-surface temperature through clouds. Science 288:847–850CrossRefGoogle Scholar
  76. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi: 10.1029/2007JD009316 Google Scholar
  77. Xie S-P, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  78. Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586CrossRefGoogle Scholar
  79. Zebiak SE, Cane MA (1987) A model El Niñ-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  80. Zhang H, Clement A, Di Nezio P (2014) The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J Clim 27:769–783. doi: 10.1175/JCLI-D-13-00082.1

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. Dayan
    • 1
  • T. Izumo
    • 1
  • J. Vialard
    • 1
    Email author
  • M. Lengaigne
    • 1
    • 2
  • S. Masson
    • 1
  1. 1.CNRS-IRD-MNHN, LOCEAN Laboratory, IPSLSorbonne Universités (UPMC, Univ Paris 06)ParisFrance
  2. 2.IISc-NIO-IITM-IRD Joint International Laboratory, NIOIndo-French Cell for Water SciencesDona PaulaIndia

Personalised recommendations