Climate Dynamics

, Volume 44, Issue 7–8, pp 2177–2193 | Cite as

Simulating weather regimes: impact of model resolution and stochastic parameterization

  • Andrew Dawson
  • T. N. Palmer


The simulation of quasi-persistent regime structures in an atmospheric model with horizontal resolution typical of the Intergovernmental Panel on Climate Change fifth assessment report simulations, is shown to be unrealistic. A higher resolution configuration of the same model, with horizontal resolution typical of that used in operational numerical weather prediction, is able to simulate these regime structures realistically. The spatial patterns of the simulated regimes are remarkably accurate at high resolution. A model configuration at intermediate resolution shows a marked improvement over the low-resolution configuration, particularly in terms of the temporal characteristics of the regimes, but does not produce a simulation as accurate as the very-high-resolution configuration. It is demonstrated that the simulation of regimes can be significantly improved, even at low resolution, by the introduction of a stochastic physics scheme. At low resolution the stochastic physics scheme drastically improves both the spatial and temporal aspects of the regimes simulation. These results highlight the importance of small-scale processes on large-scale climate variability, and indicate that although simulating variability at small scales is a necessity, it may not be necessary to represent the small-scales accurately, or even explicitly, in order to improve the simulation of large-scale climate. It is argued that these results could have important implications for improving both global climate simulations, and the ability of high-resolution limited-area models, forced by low-resolution global models, to reliably simulate regional climate change signals.


Circulation regimes Stochastic physics Cluster analysis European weather regimes Horizontal resolution GCM 



This work was funded by the Natural Environment Research Council TEMPEST (Testing and Evaluating Model Predictions of European Storms) project. TP is funded by an ERC grant (Towards the Prototype Probabilistic Earth-System Model for Climate Prediction, project number 291406). Thanks to Jim Kinter, Thomas Jung and colleagues for their hard work on the Athena project which enabled this research. We are also grateful to Nils Wedi and Mirek Andrejczuk for performing additional numerical experiments on our behalf. AD is grateful for useful discussions with David Straus, Susanna Corti and Christophe Cassou. The twentieth century Reanalysis V2 data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at Support for the Twentieth century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. We thank two anonymous reviewers whose comments helped to improve the manuscript.


  1. Arnold HM, Moroz IM, Palmer TN (2013) Stochastic parametrizations and model uncertainty in the Lorenz ’96 system. Philos Trans R Soc A 371: doi: 10.1098/rsta.2011.0479
  2. Barrier N, Treguier A-M, Cassou C, Deshayes J (2013) Impact of the winter North-Atlantic weather regimes on subtropical sea-surface height variability. Clim Dynam 41:1159–1171. doi: 10.1007/s00382-012-1578-7 CrossRefGoogle Scholar
  3. Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteor Soc 125:2887–2908. doi: 10.1002/qj.49712556006 CrossRefGoogle Scholar
  4. Cassou C (2008) Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature 455:523–527. doi: 10.1038/nature07286 CrossRefGoogle Scholar
  5. Christensen HM, Moroz IM, Palmer TN (2014) Simulating weather regimes: impact of stochastic and perturbed parameter schemes in a simple atmospheric model. Clim Dynam. doi: 10.1007/s00382-014-2239-9
  6. Christiansen B (2007) Atmospheric circulation regimes: Can cluster analysis provide the number? J Clim 20:2229–2250. doi: 10.1175/JCLI4107.1 CrossRefGoogle Scholar
  7. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RR, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–37. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  8. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802. doi: 10.1038/19745 CrossRefGoogle Scholar
  9. Dawson A, Matthews AJ, Stevens DP (2011) Rossby wave dynamics of the extra-tropical response to El Niño: importance of the basic state in coupled GCMs. Clim Dynam 37:391–405. doi: 10.1007/s00382-010-0854-7 CrossRefGoogle Scholar
  10. Dawson A, Palmer TN, Corti S (2012) Simulating regime structures in weather and climate prediction models. Geophys Res Let 39:L21805. doi: 10.1029/2012GL053284 CrossRefGoogle Scholar
  11. Dawson A, Matthews AJ, Stevens DP, Roberts MJ, Vidale PL (2013) Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models. Clim Dynam 41:1439–1452. doi: 10.1007/s00382-012-1518-6 CrossRefGoogle Scholar
  12. Düben PD, McNamara H, Palmer TN (2013) The use of imprecise processing to improve accuracy in weather & climate prediction. J Comput Phys 271:2–18. doi: 10.1016/ CrossRefGoogle Scholar
  13. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
  14. Fereday DR, Knight JR, Scaife AA, Folland CK, Philipp A (2008) Cluster analysis of North Atlantic-European circulation types and links with tropical pacific sea surface temperatures. J Clim 21:3687–3703. doi: 10.1175/2007JCLI1875.1 CrossRefGoogle Scholar
  15. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79:231–244. doi: 10.1016/j.jmarsys.2009.11.002 CrossRefGoogle Scholar
  16. Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Cash BA, Kinter JL III, Marx L, Stan C, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172. doi: 10.1175/JCLI-D-11-00265.1 CrossRefGoogle Scholar
  17. Kinter JL III, Cash B, Achuthavarier D, Adams J, Altshuler E, Dirmeyer P, Doty B, Huang B, Marx L, Manganello J, Stan C, Wakefield T, Jin E, Palmer T, Hamrud M, Jung T, Miller M, Towers P, Wedi N, Satoh M, Tomita H, Kodama C, Nasuno T, Oouchi K, Yamada Y, Taniguchi H, Andrews P, Baer T, Ezell M, Halloy C, John D, Loftis B, Mohr R, Wong K (2013) Revolutionizing climate modelling—project Athena: a multi-institutional, international collaboration. Bull Am Meteorol Soc 94:231–245. doi: 10.1175/BAMS-D-11-00043.1 CrossRefGoogle Scholar
  18. Lin JW-B, Neelin JD (2000) Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys Res Let 27:3691–3694. doi: 10.1029/2000GL011964 CrossRefGoogle Scholar
  19. Lin JW-B, Neelin JD (2003) Toward stochastic deep convective parameterization in general circulation models. Geophys Res Let 30:1163. doi: 10.1029/2002GL016203 CrossRefGoogle Scholar
  20. Masato G, Hoskins BJ, Woollings TJ (2012) Wave-breaking characteristics of midlatitude blocking. Q J R Meteor Soc 138:1285–1296. doi: 10.1002/qj.990 CrossRefGoogle Scholar
  21. Michelangeli P-A, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256. doi: 10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
  22. Palmer TN (1993) Extended-range atmospheric prediction and the Lorenz model. Bull Am Meteorol Soc 74:49–65. doi: 10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2 CrossRefGoogle Scholar
  23. Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Clim 12:575–591. doi: 10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2 CrossRefGoogle Scholar
  24. Palmer TN (2012) Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Q J R Meteor Soc 138:841–861. doi: 10.1002/qj.1923 CrossRefGoogle Scholar
  25. Palmer TN, Weisheimer A (2011) Diagnosing the causes of bias in climate models—why is it so hard? Geophys Astro Fluid 105:351–365. doi: 10.1080/03091929.2010.547194 CrossRefGoogle Scholar
  26. Palmer TN, Buizza R, Doblas-Reyes F, Jung T, Leutbecher M, Shutts GJ, Steinheimer M, Weisheimer A (2009) Stochastic parametrization and model uncertainty, Tech. Rep. 598, European Centre for Medium-Range Weather Forecasts, Reading, UKGoogle Scholar
  27. Pohl B, Fauchereau N (2012) The southern annular mode seen through weather regimes. J Clim 25:3336–3354. doi: 10.1175/JCLI-D-11-00160.1 CrossRefGoogle Scholar
  28. Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Let 38:L23703. doi: 10.1029/2011GL049573 CrossRefGoogle Scholar
  29. Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory M-E, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896. doi: 10.1175/2008JCLI2508.1 CrossRefGoogle Scholar
  30. Straus DM (2010) Synoptic-eddy feedbacks and circulation regime analysis. Mon Weather Rev 138:4026–4034. doi: 10.1175/2010MWR3333.1 CrossRefGoogle Scholar
  31. Straus DM, Corti S, Molteni F (2007) Circulation regimes: chaotic variability versus SST-forced predictability. J Clim 20:2251–2272. doi: 10.1175/JCLI4070.1 CrossRefGoogle Scholar
  32. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 CrossRefGoogle Scholar
  33. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65:609–626. doi: 10.1175/2007JAS2347.1 CrossRefGoogle Scholar
  34. Woollings T, Hannachi A, Hoskins B (2010a) Variability of the North Atlantic Eddy-driven jet stream. Q J R Meteor Soc 136:856–868. doi: 10.1002/qj.625 CrossRefGoogle Scholar
  35. Woollings T, Hannachi A, Hoskins B, Turner A (2010b) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Clim 23:1291–1307. doi: 10.1175/2009JCLI3087.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations