Climate Dynamics

, Volume 44, Issue 9–10, pp 2897–2908 | Cite as

An interhemispheric mechanism for glacial abrupt climate change

  • Rubén BanderasEmail author
  • Jorge Alvarez-Solas
  • Alexander Robinson
  • Marisa Montoya


The last glacial period was punctuated by abrupt climate changes that are widely considered to result from millennial-scale variability of the Atlantic meridional overturning circulation (AMOC). However, the origin of these AMOC reorganizations remains poorly understood. The climatic connection between both hemispheres indicated by proxies suggests that the Southern Ocean (SO) could regulate this variability through changes in winds and atmospheric CO\(_{2}\) concentration. Here, we investigate this hypothesis using a coupled climate model forced by prescribed CO\(_{2}\) and SO wind-stress variations. We find that the AMOC exhibits an oscillatory behavior between weak and strong circulation regimes which is ultimately caused by changes in the meridional density gradient of the Atlantic Ocean. The evolution of the simulated climatic patterns matches the amplitude and timing of the largest events that occurred during the last glacial period and their widespread climatic impacts. Our results suggest the existence of an internal interhemispheric oscillation mediated by the bipolar seesaw that could promote glacial abrupt climate changes through variations in atmospheric CO\(_{2}\) levels, the strength of the SO winds and AMOC reorganizations, and provide an explanation for the pervasive Antarctic-like climate signal found in proxy records worldwide.


Abrupt climate change Paleoclimate modeling Dansgaard–Oeschger events Atlantic meridional overturning circulation 



This work has been partially funded by the Spanish Ministry of Science and Innovation CGL2011-29672-C02-01. R.B. is supported by a predoctoral fellowship of the Universidad Complutense (UCM). Research by J.A.S. has been partially supported by a PICATA postdoctoral fellowship of the Moncloa Campus of International Excellence (UPM-UCM). AR is funded by the European Commission’s Marie Curie 7th Framework Programme. Computational resources have been provided by the Spanish Environmental Research Center (CIEMAT) in Madrid. We are grateful to J. Adkins, R. F. Anderson and A. Griesel for fruitful discussion and to the two anonymous reviewers for useful comments that have contributed to improve the manuscript.

Supplementary material

Supplementary material 1 (mpg 3910 KB)


  1. Abernathey R, Marshall J, Ferreira D (2011) The dependence of Southern Ocean meridional overturning on wind stress. J Phys Oceanogr 41(12):2261–2278. doi: 10.1175/JPO-D-11-023.1 CrossRefGoogle Scholar
  2. Ahn J, Brook E (2008) Atmospheric CO\(_{2}\) and climate on millennial time scales during the last glacial period. Science 322(5898):83–85. doi: 10.1126/science.1160832 CrossRefGoogle Scholar
  3. Alley R, Clark P, Keigwin L, Webb R (1999) Making sense of millennial-scale climate change. Geophys Monogr Ser 112:385–394Google Scholar
  4. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO\(_{2}\). Science 323(5920):1443–1448. doi: 10.1126/science.1167441 CrossRefGoogle Scholar
  5. Banderas R, Alvarez-Solas J, Montoya M (2012) Role of CO\(_{2}\) and Southern Ocean winds in glacial abrupt climate change. Clim Past 8(3):1011–1021. doi: 10.5194/cp-8-1011-2012 CrossRefGoogle Scholar
  6. Barker S, Knorr G (2007) Antarctic climate signature in the Greenland ice core record. Proc Natl Acad Sci 104(44):17278–17282. doi: 10.1073/pnas.0708494104 CrossRefGoogle Scholar
  7. Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–11. doi: 10.1038/29447 CrossRefGoogle Scholar
  8. Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharge of icebergs into the North Atlantic ocean during the last glacial. Nature 360:245–249. doi: 10.1038/360245a0 CrossRefGoogle Scholar
  9. Ceppi P, Hwang YT, Liu X, Frierson DM, Hartmann DL (2013) The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J Geophys Res Atmos 118. doi: 10.1002/jgrd.50461
  10. Chiang J, Bitz C (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25(5):477–496. doi: 10.1007/s00382-005-0040-5 CrossRefGoogle Scholar
  11. Crowley TJ (1992) North Atlantic deep water cools the Southern Hemisphere. Paleoceanography 7:489–497. doi: 10.1029/92PA01058 CrossRefGoogle Scholar
  12. Dansgaard W, Johnsen S, Clausen H, Dahl-Jensen D, Gundestrup N, Hammer C, Hvidberg C, Steffensen J, Sveinbjörnsdottr A, Jouzel J et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220. doi: 10.1038/364218a0 CrossRefGoogle Scholar
  13. Denton G, Anderson R, Toggweiler J, Edwards R, Schaefer J, Putnam A (2010) The last glacial termination. Science 328(5986):1652. doi: 10.1126/science.1184119 CrossRefGoogle Scholar
  14. Dokken TM, Nisancioglu KH, Li C, Battisti DS, Kissel C (2013) Dansgaard–oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28(3):491–502. doi: 10.1002/palo.20042 CrossRefGoogle Scholar
  15. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158. doi: 10.1038/35051500 CrossRefGoogle Scholar
  16. Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–2079. doi: 10.1126/science.283.5410.2077 CrossRefGoogle Scholar
  17. Hallberg R, Gnanadesikan A (2006) The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J Phys Oceanogr 36(12):2232–2252CrossRefGoogle Scholar
  18. Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker T, Johnsen S, Landais A, Jouzel J (2006) Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH\(_{4}\). Earth Planet Sci Lett 243(3–4):504–519. doi: 10.1016/j.epsl.2006.01.002 CrossRefGoogle Scholar
  19. Keeling RF, Stephens BB (2001) Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16(1):112–131. doi: 10.1029/2000pa000529 CrossRefGoogle Scholar
  20. Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature 424:532–536. doi: 10.1038/nature01855 CrossRefGoogle Scholar
  21. Knorr G, Lohmann G (2007) Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem Geophys Geosyst 8(12):Q12,006. doi: 10.1029/2007GC001604 Google Scholar
  22. Krebs U, Timmermann A (2007) Tropical air–sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20(19):4940–4956. doi: 10.1175/JCLI4296.1 CrossRefGoogle Scholar
  23. Landais A, Barnola J, Masson-Delmotte V, Jouzel J, Chappellaz J, Caillon N, Huber C, Leuenberger M, Johnsen S (2004) A continuous record of temperature evolution over a sequence of Dansgaard–Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP). Geophys Res Lett 31(22). doi: 10.1029/2004GL021193
  24. Lang C, Leuenberger M, Schwander J, Johnsen S (1999) 16\(^\circ\)C rapid temperature variation in central Greenland 70,000 years ago. Science 286(5441):934. doi: 10.1126/science.286.5441.934 CrossRefGoogle Scholar
  25. Lee S, Chiang J, Matsumoto K, Tokos K (2011) Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO\(_{2}\): modeling perspective and paleoceanography implications. Paleoceanography 26:PA1214. doi: 10.1029/2010PA002004 CrossRefGoogle Scholar
  26. Li C, Battisti DS, Bitz CM (2010) Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals? J Clim 23(20). doi: 10.1175/2010JCLI3409.1
  27. Liu Z, Otto-Bliesner B, He F, Brady E, Tomas R, Clark P, Carlson A, Lynch-Stieglitz J, Curry W, Brook E et al (2009) Transient simulation of last deglaciation with a new mechanism for Bolling–Allerod warming. Science 325(5938):310–314. doi: 10.1126/science.1171041 CrossRefGoogle Scholar
  28. Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M, Hodell DA, Jaccard SL, Eglinton TI, Haug GH (2014) Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343(6177):1347–1350. doi: 10.1126/science.1246848 CrossRefGoogle Scholar
  29. Menviel L, Timmermann A, Friedrich T, England M (2014) Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing. Clim Past 10(1):63–77. doi: 10.5194/cp-10-63-2014 CrossRefGoogle Scholar
  30. Montoya M, Levermann A (2008) Surface wind-stress threshold for glacial Atlantic overturning. Geophys Res Lett 35(L03):608. doi: 10.1029/2007GL032560 Google Scholar
  31. Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2005) The Earth system model of intermediate complexity CLIMBER-3\(\alpha\). Part I: description and performance for present day conditions. Clim Dyn 25:237–263. doi: 10.1007/s00382-005-0044-1 CrossRefGoogle Scholar
  32. Mosblech NA, Bush MB, Gosling WD, Hodell D, Thomas L, van Calsteren P, Correa-Metrio A, Valencia BG, Curtis J, van Woesik R (2012) North Atlantic forcing of Amazonian precipitation during the last ice age. Nat Geosci 5(11):817–820. doi: 10.1038/ngeo1588 CrossRefGoogle Scholar
  33. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5 G(VM 2) model and GRACE. Ann Rev Earth Plan Sci 32(1):111–149. doi: 10.1146/ CrossRefGoogle Scholar
  34. Petersen S, Schrag D, Clark P (2013) A new mechanism for Dansgaard–Oeschger cycles. Paleoceanography. doi: 10.1029/2012PA002364
  35. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811. doi: 10.1007/s003820050144 CrossRefGoogle Scholar
  36. Rashid H, Hesse R, Piper D (2003) Evidence for an additional Heinrich event between H5 and H6 in the labrador sea. Paleoceanography 18(4):1077. doi: 10.1029/2003PA000913 CrossRefGoogle Scholar
  37. Rooth C (1982) Hydrology and ocean circulation. Prog Oceanogr 11:131–149CrossRefGoogle Scholar
  38. Schewe J, Levermann A (2010) The role of meridional density differences for a wind-driven overturning circulation. Clim Dyn 34:547–556. doi: 10.1007/s00382-009-0572-1 CrossRefGoogle Scholar
  39. Stocker TF (1998) The seesaw effect. Science 282:61–62. doi: 10.1126/science.282.5386.61 CrossRefGoogle Scholar
  40. Stocker TF (2003) South dials north. Nature 424:496–499. doi: 10.1038/424496a CrossRefGoogle Scholar
  41. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230. doi: 10.1111/j.2153-3490.1961.tb00079.x CrossRefGoogle Scholar
  42. Toggweiler JR (2009) Shifting westerlies. Science 323(5920):1434–1435. doi: 10.1126/science.1169823 CrossRefGoogle Scholar
  43. Toggweiler JR, Lea D (2010) Temperature differences between the hemispheres and ice age climate variability. Paleoceanography 25(2):PA2212. doi: 10.1029/2009PA001758 CrossRefGoogle Scholar
  44. Toggweiler JR, Samuels B (1995) Effect of drake passage on the global thermohaline circulation. Deep-Sea Res 42:477–500. doi: 10.1016/0967-0637(95)00,012-U CrossRefGoogle Scholar
  45. Toggweiler JR, Russell JL, Carson S (2006) Midlatitude westerlies, atmospheric CO\(_{2}\), and climate change during the ice ages. Paleoceanography 21(2):PA2005. doi: 10.1029/2005PA001,154 CrossRefGoogle Scholar
  46. Trenberth K, Olson J, Large W (1989) A global ocean wind stress climatology based on ECMWF analyses. Technical Report NCAR/TN-338+STR, National Center for Atmospheric Research, Boulder, Colorado, USA. doi: 10.5065/D6ST7MR9
  47. Wang X, Auler A, Edwards R, Cheng H, Ito E, Wang Y, Kong X, Solheid M (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34(23):L23,701. doi: 10.1029/2007GL031149 CrossRefGoogle Scholar
  48. Wang Y, Cheng H, Edwards R, An Z, Wu J, Shen C, Dorale J (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345. doi: 10.1126/science.1064618 CrossRefGoogle Scholar
  49. Watson AJ, Naveira Garabato AC (2006) The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO\(_{2}\) change. Tellus B 58(1):73–87. doi: 10.1111/j.1600-0889.2005.00167.x CrossRefGoogle Scholar
  50. Watson AJ, Ledwell JR, Messias MJ, King BA, Mackay N, Meredith MP, Mills B, Garabato ACN (2013) Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501(7467):408–411. doi: 10.1038/nature12432 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rubén Banderas
    • 1
    • 2
    Email author
  • Jorge Alvarez-Solas
    • 1
    • 2
  • Alexander Robinson
    • 1
    • 2
  • Marisa Montoya
    • 1
    • 2
  1. 1.Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Geociencias (UCM-CSIC)MadridSpain

Personalised recommendations