Climate Dynamics

, Volume 45, Issue 1–2, pp 397–405 | Cite as

Reconstructed summer temperatures over the last 400 years based on larch ring widths: Sakhalin Island, Russian Far East

  • Gregory C. Wiles
  • Olga Solomina
  • Rosanne D’Arrigo
  • Kevin J. Anchukaitis
  • Yury V. Gensiarovsky
  • Nicholas Wiesenberg


A new ring-width record from the eastern flanks of the Eastern Sakhalin Range, Sakhalin Island, Russian Federation is significantly correlated with summer temperatures and allows for the reconstruction of May–July average temperatures for the past 400 years. The reconstruction explains 37 % of the variance in May–July temperatures and shows a strong cooling between 1680 and 1710 CE coincident with the Maunder solar minimum and in agreement with other independent tree-ring reconstructions and glacier histories from sites along the margin of the Sea of Okhotsk. While recent decades are among the warmest in the record they are rivaled by periods centered on 1650 and 1850 CE. Warming in the observational record and the reconstruction is consistent with the influence of the declining strength of the Siberian High and loss of sea ice over the same interval. Decadal (17–25 year) variability persists throughout the reconstruction. At interannual timescales the Sakhalin reconstruction is most strongly correlated with local and central North Pacific sea surface temperatures over the past 120 years, whereas at decadal timescales there is an additional association with Asian land surface temperatures.


Tree-rings Russian Far East Sakhalin Island Sea of Okhotsk Larch 



We acknowledge the support, logistics and help in sampling by N.A.Kazakov of the Russian Far East Branch of the Geological Institute. This project was funded by National Science Foundation Grant Nos. AGS 1159430 and 1202218. LDEO Contribution #7806.


  1. Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9:3373–3404CrossRefGoogle Scholar
  2. Andreev AG (2008) Interannual variations of the East Kamchatka and East-Sakhalin currents volume transport and their impact on the temperature and chemical parameters in the Okhotsk Sea. PICES Sci Rep 36:21–27Google Scholar
  3. Barr ID, Solomina O (2013) Pleistocene and holocene glacier fluctuations upon the Kamchatka Peninsula. Glob Planet Chang doi: 10.1016/j.globlacha.2013.08.005
  4. Cook ER (1985) A time series analysis approach to tree-ring standardization. Dissertation, University of Arizona, reprinted at Lamont-Doherty Earth Observatory Palisades, New York p 171Google Scholar
  5. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluwer Academic Publishing, BostonCrossRefGoogle Scholar
  6. Cook ER, Pederson N (2011) Uncertainty, emergence, and statistics in dendrochonology. In: Hughes MK et al. (eds) Dendroclimatology. Progress and prospects 11, doi: 10.1007/978-1-4020-5725-0_4
  7. Cook ER, Meko DM, Stahle DW et al (1999) Drought reconstructions for the continental United States. J Clim 12:1145–1162CrossRefGoogle Scholar
  8. D’Arrigo RD, Jacoby G, Wilson R, Panagiotopoulos R (2005) A reconstructed Siberian High index since A.D. 1599 from Eurasian and North American tree rings. Geophys Res Lett. doi:  10.1029/2004GL022271
  9. D’Arrigo R, Villalba R, Wiles GC (2001) Tree-ring estimates of Pacific decadal climate variability. Clim Dyn 18:219–224CrossRefGoogle Scholar
  10. Davi N, D’Arrigo R, Jacoby G, Buckley B, Kobayashi O (2002) Warm-season annual temperature variability for Hokkaido, Japan reconstructed from tree-ring density data: AD 1557–1990. Clim Chang 52:201–217CrossRefGoogle Scholar
  11. Drevilo MS, Zhiruey SP, Okopny VI, Gensiorovsky YV, Kazakov NA (2000) Monitoring of the snow cover in Sakhalin. Data Glaciol Stud 89:89–94Google Scholar
  12. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  13. Glebova S, Yu UI, Sorokin YD (2009) Long-term changes of atmospheric centres and climate regime of the Sea of Okhotsk in the last three decades. Izvestiya TINRO 159:285–298 (in Russian)Google Scholar
  14. Gostev M, Wiles GC, D’Arrigo RD, Jacoby GC (1996) Early summer temperatures reconstructed since 1670 A.D. for central Kamchatka based on Siberian Larch tree-ring width data. Can J For Res 26:2048–2052CrossRefGoogle Scholar
  15. Hansen JR, Ruedy R, Sato M, Lo K (2010), Global surface temperature change. Rev Geophys. doi: 10.1029/2010RG000345
  16. Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 44:69–74Google Scholar
  17. Jacoby G, Solomina O, Frank D, Eremenko N, D’Arrigo R (2004) Kunashir (Kurile Islands) oak response to temperature and relation to the Pacific Decadal Oscillation (PDO). Palaeogeography, Palaeoclimatology, Palaeoecology 2009:303–311Google Scholar
  18. Kharuk VI, Kasichke ES, Yakubailik OE (2007) The spatial and temporal distribution of fires on Sakhalin Island, Russia. Int J Wildland Fire 16:556–562CrossRefGoogle Scholar
  19. Kim ST (2012) A review of the Sea of Okhotsk ecosystem response to the climate with special emphasis on fish populations. ICES J Mar Sci. doi: 10.1093/icejms/fss107
  20. Krestov PV (2003) Forest vegetation of Easternmost Russia (Russian Far East): In: Forest vegetation of Northeast Asia, Kluwer Academic Publishers. 93–180Google Scholar
  21. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  22. Mantua NJ, Hare SR, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  23. Minobe S (1997) A 50-70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686CrossRefGoogle Scholar
  24. Nihashi S, Ohshima KI, Nakasato H (2011) Sea-ice retreat in the Sea of Okhotsk and the ice-ocean albedo feedback effect on it. J Oceanogr 67:551. doi: 10.1007/s10872-011-0056-x CrossRefGoogle Scholar
  25. Ohshima KI, Nakanowatari T, Nakatsuka T, Nishioka J, Wakatsuchi M (2008) Changes in the Sea of Okhotsk due to global warming—weakening pump function to the North Pacific. PICES Sci Rep 36:16–20Google Scholar
  26. Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B 204–237Google Scholar
  27. Radchenko VI, Dulepova EP, Figurkin AL, Katugin ON, Ohshima K, Nishioka J, McKinnell SM et al (2010) Status and trends of the Sea of Okhotsk region, 2003–2008: In: McKinnell SM, Dagg MG (eds) Marine science ecosystems of the North Pacific Ocean PICES Special Publication. pp 268–299Google Scholar
  28. Solomina O, Wiles GC, Shiraiwa T, D’Arrigo R (2006) Multiproxy records of climate variability for Kamchatka for the past 400 years. Climate of the Past 2:1051-1073 SRef-ID: 1814-9359/cpd/2006-2-105Google Scholar
  29. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  30. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096CrossRefGoogle Scholar
  31. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol 23:201–213CrossRefGoogle Scholar
  32. Wiles GC, D’Arrigo RD, Barclay D, Wilson R, Jarvis SK, Vargo L, Frank D (2014) Surface air temperature variability for the Gulf of Alaska over the past 1200 years. Holocene. doi: 10.1177/0959683613516815 Google Scholar
  33. Wilson R, Wiles G, D’Arrigo R, Zweck C (2007) Cycles and shifts: 1,300 years of multi-decadal temperature variability in the Gulf of Alaska. Clim Dyn 28:425–440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gregory C. Wiles
    • 1
  • Olga Solomina
    • 2
    • 3
  • Rosanne D’Arrigo
    • 4
  • Kevin J. Anchukaitis
    • 5
  • Yury V. Gensiarovsky
    • 6
  • Nicholas Wiesenberg
    • 1
  1. 1.Tree Ring LabThe College of WoosterWoosterUSA
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.Tree Ring LabLamont-Doherty Earth ObservatoryPalisadesUSA
  5. 5.Woods Hole Oceanographic InstitutionWoods HoleUSA
  6. 6.Sakhalin Branch of Far East Geological InstituteRussian Academy of SciencesYuhzno-SakhalinskRussia

Personalised recommendations