Climate Dynamics

, Volume 45, Issue 1–2, pp 407–424 | Cite as

Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

  • D. G. Kaskaoutis
  • A. Rashki
  • E. E. Houssos
  • A. Mofidi
  • D. Goto
  • A. Bartzokas
  • P. Francois
  • M. Legrand


Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June–September) of the years 2001–2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model simulations.


Dust storms Synoptic–dynamic meteorology Levar Model simulations IDDI Sistan 



The NCEP/NCAR Reanalysis team is gratefully acknowledged for providing the meteorological maps, as well as the NOAA Climate Prediction Center for the Oceanic Niño Index values. We gratefully acknowledge the Eumetsat services for their providing and delivering the raw Meteosat imagery, free of charge; we thank the personnel of ICARE Thematic Center who collected and archived the raw images. The SPRINTARS calculations were performed by using National Institute for Environmental Studies (NIES) supercomputer system (NEC SX-8R/128M16). We would also like to thank many developers for MIROC AGCM and SPRINTARS and two anonymous reviewers for their valuable comments.


  1. Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Plan Chang 106:13–19CrossRefGoogle Scholar
  2. Abolhasan G, Maryam N (2013) Case study: ENSO events, rainfall variability and the potential of SOI for the seasonal precipitation predictions in Iran. Am J Clim Chang 2:34–45CrossRefGoogle Scholar
  3. Akhlaq M, Sheltami TR, Mouftah HT (2012) A review of techniques and technologies for sand and dust storm detection. Rev Environ Sci Biotechnol. doi: 10.1007/s11157-012-9282-y Google Scholar
  4. Alizadeh Choobari O, Zawar-Reza P, Sturman A (2012) Feedback between windblown dust and planetary boundary layer characteristics: sensitivity to boundary and surface layer parameterizations. Atmos Environ 61:294–304CrossRefGoogle Scholar
  5. Alizadeh Choobari O, Zawar-Reza P, Sturman A (2013) Low level jet intensification by mineral dust aerosols. Ann Geophys 31:625–632CrossRefGoogle Scholar
  6. Allen CJT, Washington R (2014) The low-level jet dust emission mechanism in the central Sahara: observations from Bordj-Badji Mokhtar during the June 2011 fennec intensive observation period. J Geophys Res 119:2990–3015. doi: 10.1002/2013JD020594 CrossRefGoogle Scholar
  7. Antón M, Valenzuela A, Cazorla A et al (2012) Global and diffuse shortwave irradiance during a strong desert dust episode at Granada (Spain). Atmos Res 118:232–239CrossRefGoogle Scholar
  8. Ashpole I, Washington R (2013) A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking. J Geophys Res 118:6981–6995. doi: 10.1002/jgrd.50554 Google Scholar
  9. Awad AM, Mashat AWS (2013) Synoptic features associated with dust transition processes from North Africa to Asia. Arab J Geosci. doi: 10.1007/s12517-013-0923-4 Google Scholar
  10. Barkan J, Alpert P, Kutiel H, Kishcha P (2005) Synoptics of dust transportation days from Africa toward Italy and central Europe. J Geophys Res 110:D07208. doi: 10.1029/2004JD005222 Google Scholar
  11. Bidokhti AA, Boroumand N (2005) Study of gap winds in the Lut Plateau. Desert 13:13–30Google Scholar
  12. Bidokhti AA, Malekifard F, Mirrokni M (2002) A numerical model for prediction of threshold velocity of moving sand transport in deserts. Desert 8:127–136Google Scholar
  13. Bonnet S, Guieu C, Chiaverini J, Ras J, Stock A (2005) Effect of atmospheric nutrients on the autotrophic communities in low nutrient low chlorophyll system. Limnol Oceanogr 50(6):1810–1819CrossRefGoogle Scholar
  14. Bou Karam D, Flamant C, Cuesta J, Pelon J, Williams E (2010) Dust emission and transport associated with a Saharan depression: February 2007 case. J Geophys Res 115:D00H27. doi: 10.1029/2009JD012390 Google Scholar
  15. Brooks N, Legrand M (2000) Dust variability over Northern Africa and rainfall in the Sahel. In: McLaren SJ, Kniveton DR (eds) Linking climate change to land surface change. Kluwer, Dordrecht, pp 1–25CrossRefGoogle Scholar
  16. Bryant RG (2013) Recent advances in our understanding of dust source emission processes. Progr Phys Geogr 37:397–421CrossRefGoogle Scholar
  17. Bullard JE, Harrison SP, Baddock MC, Drake N, Gill TE, McTainsh G, Sun Y (2011) Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models. J Geophys Res 116:F04034. doi: 10.1029/2011JF002061 Google Scholar
  18. Calastrini F, Guarnieri F, Becagli S, Busillo C, Chiari M, Dayan U, Lucarelli F, Nava S, Pasqui, M, Traversi R, Udisti R, Zipoli G (2012) Desert dust outbreaks over Mediterranean basin: a modeling, observational, and synoptic analysis approach. Adv Meteorol (article ID 246874). doi: 10.1155/2012/246874
  19. Carlson TN, Benjamin SG (1980) Radiative heating rates for Saharan dust. J Atmos Sci 37:193–213CrossRefGoogle Scholar
  20. Cavazos-Guerra C, Todd MC (2012) Model simulations of complex dust emissions over the Sahara during the West African monsoon onset. Adv Meteorol (article ID 351731). doi: 10.1155/2012/351731
  21. Chinnam N, Dey S, Tripathi SN, Sharma M (2006) Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing. Geophys Res Lett 33:L08803. doi: 10.1029/2005GL025278 Google Scholar
  22. Cuesta J, Marsham J, Parker DJ, Flamant C (2009) Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos Sci Lett 10:34–42CrossRefGoogle Scholar
  23. Ekhtesasi MR, Gohari Z (2013) Determining area affected by dust storms in different wind speeds, using satellite images (case study: Sistan plain, Iran). Desert 17:193–202Google Scholar
  24. Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RKM, Casuccio G, Gertler AW (2009) Characterizing mineral dusts and other aerosols from the Middle East—part 1: ambient sampling. Inhal Toxicol 21:297–326CrossRefGoogle Scholar
  25. Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100CrossRefGoogle Scholar
  26. Esmaili O, Tajrishy M (2006) Results of the 50 year ground-based measurements in comparison with satellite remote sensing of two prominent dust emission sources located in Iran. In: Proceedings of the SPIE, vol 6362, p 636209. doi: 10.1117/12.692989
  27. Frangi J-P, Druilhet A, Durand P, Ide H, Pages J-P, Tinga A (1992) Energy budget of the Sahelian surface layer. Ann Geophys 10:25–33Google Scholar
  28. Gillette D (1978) A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed and soil consolidation on dust production. Atmos Environ 12:1735–1743CrossRefGoogle Scholar
  29. Ginoux P, Prospero JM, Gill TE, Hsu CN, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. doi: 10.1029/2012RG000388 CrossRefGoogle Scholar
  30. Giorgi F, Marinucci MR, Bates GT (1993) Development of a second generation regional climate model (RegCM2) part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  31. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bil X, Elguindi N, Diro GT, Nair V, Diro G, Giuliani GT, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Giuliani GT, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  32. Goto D, Takemura T, Nakajima T, Badarinath KVS (2011) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmos Environ 45:3277–3285CrossRefGoogle Scholar
  33. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204CrossRefGoogle Scholar
  34. Haustein K, Pérez C, Baldasano JM, Jorba O, Basart S, Miller RL, Janjic Z, Black T, Nickovic S, Todd MC, Washington R, Müller D, Tesche M, Weinzierl B, Esselborn M, Schladitz A (2012) Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-dust model—part 2: experimental campaigns in Northern Africa. Atmos Chem Phys 12:2933–2958CrossRefGoogle Scholar
  35. Heinold B, Knippertz P, Marsham JH, Fiedler S, Dixon NS, Schepanski K, Laurent B, Tegen I (2013) The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: estimates from convection-permitting simulations. J Geophys Res 118:4385–4400. doi: 10.1002/jgrd.50402 Google Scholar
  36. Huneeus N, Schulz M, Balkanski Y, Griesfeller J et al (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816CrossRefGoogle Scholar
  37. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Dennis J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  38. Kandler K, Schütz L, Deutcher C, Ebert M, Hofmann H, Jächel S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz A, Weinzierl B, Wiedensohler A, Zorn S, Weinbruch S (2009) Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B 65:32–50CrossRefGoogle Scholar
  39. Karimi N, Moridnejad A, Golian S, Samani JMV, Karimi D, Javadi S (2013) Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can J Remote Sens 38:586–599CrossRefGoogle Scholar
  40. Kaskaoutis DG, Kosmopoulos PG, Nastos PT, Kambezidis HD, Sharma M, Mehdi W (2012a) Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomat Nat Hazards Risk 3:35–54CrossRefGoogle Scholar
  41. Kaskaoutis DG, Gautam R, Singh RP, Houssos EE, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu NC, Holben BN, Takemura T (2012b) Influence of anomalous dry conditions on aerosols over India: transport, distribution and properties. J Geophys Res 117:D09106. doi: 10.1029/2011JD017314 Google Scholar
  42. Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD (2012c) Characterizing the long-range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. Int J Climatol 32:1249–1270CrossRefGoogle Scholar
  43. Kaskaoutis DG, Rashki A, Houssos EE, Goto D, Nastos PT (2014a) Extremely high aerosol loading over Arabian Sea during June 2008: the specific role of the atmospheric dynamics and Sistan dust storms. Atmos Environ 94:374–384CrossRefGoogle Scholar
  44. Kaskaoutis DG, Houssos EE, Goto D, Bartzokas A, Nastos PT, Sinha PR, Kharol SK, Kosmopoulos PG, Singh RP, Takemura T (2014b) Synoptic weather conditions and aerosol episodes over Indo-Gangetic plains, India. Clim Dyn. doi: 10.1007/s00382-014-2055-2 Google Scholar
  45. Khoshakhlagh F, Najafi MS, Samadi M (2012) An analysis on synoptic patterns of springtime dust occurrence in West of Iran. Geogr Res Q 2(80):99–124Google Scholar
  46. Khoshhal Dastjerdi J, Mousavi SH, Kashki A (2012) Synoptic analysis of Ilam dust storms (1987–2005). Geogr Environ Plan 2(46):15–34Google Scholar
  47. Kinne S, Schulz M, Textor C, Guibert S et al (2006) An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834CrossRefGoogle Scholar
  48. Kutiel H, Furman H (2003) Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ 12:419–426CrossRefGoogle Scholar
  49. Legrand M, N’doumé C, Jankowiak I (1994) Satellite-derived climatology of the Saharan aerosol. In: Lynch DK (eds) Passive infrared remote sensing of clouds and the atmosphere II. Proceedings of the SPIE, vol 2309, pp 127–135Google Scholar
  50. Legrand M, Plana-Fattori A, N’doumé C (2001) Satellite detection of dust using the IR imagery of meteosat 1. Infrared difference dust index. J Geophys Res 106:18251–18274CrossRefGoogle Scholar
  51. Lemaître C, Flamant C, Cuesta J, Raut J-C, Chazette P, Formenti P, Pelon J (2010) Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos Chem Phys 10:8131–8150CrossRefGoogle Scholar
  52. Léon JF, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30(6):1309. doi: 10.1029/2002GL016690 CrossRefGoogle Scholar
  53. Maghrabi A, Alharbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 45:2164–2173CrossRefGoogle Scholar
  54. Mahowald N, Baker A, Bergametti G, Brooks N, Duce R, Jickells T, Kubilay N, Prospero J, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:GB4025. doi: 10.1029/2004GB002402 Google Scholar
  55. Mahowald NM, Ballentine JA, Feddema J, Ramankutty N (2007) Global trends in visibility: implications for dust sources. Atmos Chem Phys 7:3309–3339CrossRefGoogle Scholar
  56. Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198CrossRefGoogle Scholar
  57. Mashhadi N, Feiznia S (2008) The study of removal (detachment) and transitional regions of wind erosion upon ground indicator (case study: Khartouran Erg). Desert 13:75–87Google Scholar
  58. Mathew B, Cullen H, Lyon B (2002) Drought in central and Southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J Clim 15:697–700CrossRefGoogle Scholar
  59. Meloni D, di Sarra A, Monteleone F, Pace G, Piacentino S, Sferlazzo DM (2008) Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa. Atmos Res 88:134–148CrossRefGoogle Scholar
  60. Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10:83–96Google Scholar
  61. Middleton NJ, Goudie AS (2001) Saharan dust: sources and trajectories. Trans Inst Br Geogr NS 26:165–181CrossRefGoogle Scholar
  62. Moosmüller H, Engelbrecht JP, Skiba M, Frey G, Chakrabarty RK, Arnott WP (2012) Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. J Geophys Res 117:D11210. doi: 10.1029/2011JD016909 CrossRefGoogle Scholar
  63. Najafi MS, Khoshakhllagh F, Zamanzadeh SM, Shirazi MH, Samadi M, Hajikhani S (2013) Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab J Geosci. doi: 10.1007/s12517-013-1086-z Google Scholar
  64. Nair VS, Solmon F, Giorgi F, Mariotti L, Suresh Babu S, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117:D04209. doi: 10.1029/2011JD016711 Google Scholar
  65. Nastos PT (2012) Meteorological patterns associated with intense Saharan dust outbreaks over Greece in winter. Adv Meteorol (article ID 828301). doi: 10.1155/2012/828301
  66. Nazemosadat MJ, Cordery I (2000) On the relationships between ENSO and autumn rainfall in Iran. Int J Climatol 20:47–62CrossRefGoogle Scholar
  67. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world. Bull Am Meteorol Soc 88(9):1395–1409CrossRefGoogle Scholar
  68. Padmakumari B, Maheskumar RS, Harikishan G, Morwal SB, Prabha TV, Kulkarni JR (2013) In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos Environ 80:107–121CrossRefGoogle Scholar
  69. Pérez C, Nickovic S, Baldasano JM, Sicard M, Rocadenbosch F, Cachorro VE (2006) A long Saharan dust event over the western Mediterranean: lidar, sun photometer observations, and regional dust modeling. J Geophys Res 111:D15214CrossRefGoogle Scholar
  70. Rashki A, Kaskaoutis DG, Rautenbach CJW, Eriksson PG, Qiang M, Gupta P (2012) Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeol Res 5:51–62CrossRefGoogle Scholar
  71. Rashki A, Rautenbach CJW, Eriksson PG, Kaskaoutis DG, Gupta P (2013a) Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Qual Atmos Health 6:123–135CrossRefGoogle Scholar
  72. Rashki A, Eriksson PG, Rautenbach CJW, Kaskaoutis DG, Grote W, Dykstra J (2013b) Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere 90:227–236CrossRefGoogle Scholar
  73. Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA (2013c) Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Sci Total Environ 463–464:552–564CrossRefGoogle Scholar
  74. Rashki A, Kaskaoutis DG, Rautenbach CJW, Flamant C, Abdi Vishkaee F (2014) Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Nat Hazards 71:563–585CrossRefGoogle Scholar
  75. Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeol Res 10:103–109CrossRefGoogle Scholar
  76. Roman R, Antón M, Valenzuela A, Gil GE, Lyamani H, De Miguel A, Olmo FG, Bilbao J, Alados-Arboledas L (2013) Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance. Tellus B 65:19578. doi: 10.3402/tellusb.v65i0.19578 CrossRefGoogle Scholar
  77. Saeed TM, Al-Dashti H, Spyrou C (2013) Aerosols optical and physical characteristics and direct radiative forcing during a “Shamal” dust storm, a case study. Atmos Chem Phys Discuss 13:23895–23941CrossRefGoogle Scholar
  78. Schepanski K, Tegen I, Todd MC, Heinold B, Bönisch G, Laurent B, Macke A (2009) Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of sub-daily dust source activation and numerical models. J Geophys Res 114:D10201. doi: 10.1029/2008JD010325 CrossRefGoogle Scholar
  79. Sharifikia M (2013) Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery. Nat Hazards 65:201–217CrossRefGoogle Scholar
  80. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296CrossRefGoogle Scholar
  81. Soltani A, Gholipoor M (2006) Teleconnections between El Nino/southern oscillation and rainfall and temperature in Iran. Int J Agric Res 1:603–608CrossRefGoogle Scholar
  82. Sorek-Hamer M, Cohen A, Levy RC, Ziv B, Broday DM (2013) Classification of dust days by satellite remotely sensed aerosol products. Int J Remote Sens 34:2672–2688CrossRefGoogle Scholar
  83. Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A, Nakajima T (2000) Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res 105:17853–17873CrossRefGoogle Scholar
  84. Takemura T, Egashira M, Matsuzawa K, Ichijo H, O’ishi R, Abe-Ouchi A (2009) A simulation of the global distribution and radiative forcing of soil dust aerosols at the last glacial maximum. Atmos Chem Phys 9:3061–3073CrossRefGoogle Scholar
  85. Todd MC, Washington R, Raghavan S, Lizcano G, Knippertz P (2008) Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé dust experiment (BoDEx 2005). J Clim 21:995–1012CrossRefGoogle Scholar
  86. United Nations Environment Programme (UNEP 2006) History of environmental change in the Sistan basin based on satellite image analysis: 1976–2005. UNEP Post-Conflict Branch, Geneva, Switzerland, p 60Google Scholar
  87. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate 11 data assimilation system: status update of ERA-interim. ECMWF Newsl 115:12–18.
  88. Vishkaee AF, Flamant C, Cuesta J, Oolman L, Flamant P, Khalesifard HR (2012) Dust transport over Iraq and northwest Iran associated with winter Shamal: a case study. J Geophys Res 117:D03201. doi: 10.1029/2011jd016339 Google Scholar
  89. Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from the Bodélé depression, Chad: the role of the low level jet. Geophys Res Lett 32:L17701. doi: 10.1029/2005GL023597 CrossRefGoogle Scholar
  90. Washington R, Todd MC, Lizcano G, Tegen I, Flamant C, Koren I, Ginoux P, Engelstaedter S, Goudie AS, Zender CS, Bristow C, Prospero J (2006) Links between topography, wind, deflation, lakes and dust: the case of the Bodélé depression, Chad. Geophys Res Lett 33:L09401. doi: 10.1029/2006GL025827 Google Scholar
  91. WMO (2005) Climate and land degradation. World Meteorological Organization, SwitzerlandGoogle Scholar
  92. Zarrin A, Ghaemi H, Azadi M, Mofidi A, Mirzaei E (2011) The effect of the Zagros Mountains on the formation and maintenance of the Iran anticyclone using RegCM4. Meteorol Atmos Phys 112:91–100CrossRefGoogle Scholar
  93. Zoljoodi M, Didevarasl A (2013) Evaluation of spatial-temporal variability of drought events in Iran using palmer drought severity index and its principal factors (through 1951–2005). Atmos Clim Sci 3:193–207Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. G. Kaskaoutis
    • 1
  • A. Rashki
    • 2
  • E. E. Houssos
    • 3
  • A. Mofidi
    • 4
  • D. Goto
    • 5
  • A. Bartzokas
    • 3
  • P. Francois
    • 6
  • M. Legrand
    • 6
  1. 1.Department of Physics, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
  2. 2.Natural Resources and Environment CollegeFerdowsi University of MashhadMashhadIran
  3. 3.Laboratory of Meteorology, Department of PhysicsUniversity of IoanninaIoanninaGreece
  4. 4.Geography DepartmentFerdowsi University of MashhadMashhadIran
  5. 5.National Institute for Environmental Studies (NIES)TsukubaJapan
  6. 6.LOAUniversity of Lille-1Villeneuve d’AscqFrance

Personalised recommendations