Climate Dynamics

, Volume 44, Issue 5–6, pp 1715–1730 | Cite as

Irrigation as an historical climate forcing

  • Benjamin I. Cook
  • Sonali P. Shukla
  • Michael J. Puma
  • Larissa S. Nazarenko
Article

Abstract

Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.

Keywords

Climate modeling Irrigation Forcing Historical simulations 

References

  1. Barnston AG, Schickedanz PT (1984) The effect of irrigation on warm season precipitation in the southern Great Plains. J Clim Appl Meteorol 23(6):865–888. doi:10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2 CrossRefGoogle Scholar
  2. Bellouin N, Mann GW, Woodhouse MT, Johnson C, Carslaw KS, Dalvi M (2013) Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos Chem Phys 13(6):3027–3044. doi:10.5194/acp-13-3027-2013 CrossRefGoogle Scholar
  3. Boisier JP, de Noblet-Ducoudré N, Pitman AJ, Cruz FT, Delire C, van den Hurk BJJM, van der Molen MK, Müller C, Voldoire A (2012) Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: results from the first LUCID set of simulations. J Geophys Res Atmos 117(D12). doi:10.1029/2011JD017106
  4. Bonfils C, Lobell D (2007) Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc Natl Acad Sci 104(34):13,582–13,587. doi:10.1073/pnas.0700144104 CrossRefGoogle Scholar
  5. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi:10.1038/nature10946 CrossRefGoogle Scholar
  6. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22(6):597–603. doi:10.1007/s00382-004-0402-4 Google Scholar
  7. Chen F, Xie Z (2012) Effects of crop growth and development on regional climate: a case study over East Asian monsoon area. Clim Dyn 38(11–12):2291–2305. doi:10.1007/s00382-011-1125-y CrossRefGoogle Scholar
  8. Cook BI, Puma MJ, Krakauer NY (2011) Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim Dyn 37(7–8):1587–1600. doi:10.1007/s00382-010-0932-x CrossRefGoogle Scholar
  9. DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to Irrigation over the Great Plains of the United States. J Geophys Res Atmos 115. doi:10.1029/2010JD013892
  10. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678. doi:10.1126/science.1118160 CrossRefGoogle Scholar
  11. Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrometeorol 4:1276–1290. doi:10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2 CrossRefGoogle Scholar
  12. Freydank K, Siebert S (2008) Towards mapping the extent of irrigation in the last century: time series of irrigated area per country. Technical report 8. Institute of Physical Geography, University of Frankfurt, FrankfurtGoogle Scholar
  13. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348. doi:10.1007/s00382-011-1252-5 CrossRefGoogle Scholar
  14. Hansen JE, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt GA, Russell G et al (2007) Climate simulations for 1880–2003 with GISS modelE. Clim Dyn 29(7):661–696. doi:10.1007/s00382-007-0255-8 CrossRefGoogle Scholar
  15. He B, Bao Q, Li J, Wu G, Liu Y, Wang X, Sun Z (2013) Influences of external forcing changes on the summer cooling trend over East Asia. Clim Change 117(4):829–841. doi:10.1007/s10584-012-0592-4 CrossRefGoogle Scholar
  16. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res Atmos 117(D5). doi:10.1029/2011JD017139
  17. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. doi:10.1038/nature12534
  18. Koster RD, Sud YC, Guo Z, Dirmeyer PA, Bonan G, Oleson KW, Chan E, Verseghy D, Cox P, Davies H, Kowalczyk E, Gordon CT, Kanae S, Lawrence D, Liu P, Mocko D, Lu CH, Mitchell K, Malyshev S, McAvaney B, Oki T, Yamada T, Pitman A, Taylor CM, Vasic R, Xue Y (2006) GLACE: the global land–atmosphere coupling experiment. Part I: Overview. J Hydrometeorol 7(4):590–610. doi:10.1175/JHM510.1 CrossRefGoogle Scholar
  19. Kueppers L, Snyder M, Sloan L (2007) Irrigation cooling effect: regional climate forcing by land-use change. Geophys Res Lett 34:1–5. doi:10.1029/2006GL028679
  20. Kumar S, Dirmeyer PA, Merwade V, DelSole T, Adams JM, Niyogi D (2013) Land use/cover change impacts in CMIP5 climate simulations: a new methodology and 21st century challenges. J Geophys Res Atmos 118(12):6337–6353. doi:10.1002/jgrd.50463 CrossRefGoogle Scholar
  21. Levis S, Sacks W (2011) Technical descriptions of the interactive crop management (CLM4CNcrop) and interactive irrigation models in version 4 of the Community Land Model. Technical report, National Center for Atmospheric ResearchGoogle Scholar
  22. Lo MH, Famiglietti JS (2013) Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys Res Lett 40(2):301–306. doi:10.1002/grl.50108 CrossRefGoogle Scholar
  23. Lobell DB, Bala G, Duffy PB (2006) Biogeophysical impacts of cropland management changes on climate. Geophys Res Lett 33(6). doi:10.1029/2005GL025492
  24. Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Grunwald T, Houghton RA, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, McGrath MJ, Meyfroidt P, Moors EJ, Naudts K, Novick K, Otto J, Pilegaard K, Pio CA, Rambal S, Rebmann C, Ryder J, Suyker AE, Varlagin A, Wattenbach M, Dolman AJ (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4(5):389–393. doi:10.1038/nclimate2196 CrossRefGoogle Scholar
  25. Mahmood R, Keeling T, Foster SA, Hubbard KG (2013a) Did irrigation impact 20th century air temperature in the High Plains aquifer region? Appl Geogr 38:11–21. doi:10.1016/j.apgeog.2012.11.002 CrossRefGoogle Scholar
  26. Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2013b) Land cover changes and their biogeophysical effects on climate. Int J Climatol. doi:10.1002/joc.3736
  27. Meehl GA, Moss R, Taylor KE, Eyring V, Stouffer RJ, Bony S, Stevens B (2014) Climate model intercomparisons: preparing for the next phase. Eos Trans Am Geophys Union 95(9):77–78. doi:10.1002/2014EO090001 CrossRefGoogle Scholar
  28. Miller RL, Schmidt GA, Nazarenko LS, Tausnev N, Bauer SE, DelGenio AD, Kelley M, Lo KK, Ruedy R, Shindell DT et al (2014) CMIP5 historical simulations (1850–2012) with GISS ModelE2. J Adv Model Earth Syst. doi:10.1002/2013MS000266
  29. Nazarenko L, Menon S (2005) Varying trends in surface energy fluxes and associated climate between 1960 and 2002 based on transient climate simulations. Geophys Res Lett 32(22). doi:10.1029/2005GL024089
  30. Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2(6):828–850. doi:10.1002/wcc.144 CrossRefGoogle Scholar
  31. Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Müller C, Reick CH, Seneviratne SI, Strengers BJ, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36(14). doi:10.1029/2009GL039076
  32. Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res Atmos 115. doi:10.1029/2010JD014122
  33. Qian Y, Giorgi F (2000) Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophys Res Lett 27(21):3521–3524. doi:10.1029/2000GL011942 CrossRefGoogle Scholar
  34. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. doi:10.1038/nature08238 CrossRefGoogle Scholar
  35. Russell GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos–Ocean 33:683–730Google Scholar
  36. Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33(2):159–175. doi:10.1007/s00382-008-0445-z CrossRefGoogle Scholar
  37. Santer BD, Painter JF, Bonfils C, Mears CA, Solomon S, Wigley TML, Gleckler PJ, Schmidt GA, Doutriaux C, Gillett NP, Taylor KE, Thorne PW, Wentz FJ (2013) Human and natural influences on the changing thermal structure of the atmosphere. Proc Natl Acad Sci. doi:10.1073/pnas.1305332110
  38. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109(24):9320–9325. doi:10.1073/pnas.1200311109 CrossRefGoogle Scholar
  39. Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL et al (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6(1):141–184. doi:10.1002/2013MS000265 CrossRefGoogle Scholar
  40. Seneviratne SI, Wilhelm M, Stanelle T, van den Hurk B, Hagemann S, Berg A, Cheruy F, Higgins ME, Meier A, Brovkin V, Claussen M, Ducharne A, Dufresne JL, Findell KL, Ghattas J, Lawrence DM, Malyshev S, Rummukainen M, Smith B (2013) Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett. doi:10.1002/grl.50956
  41. Shukla SP, Puma MJ, Cook BI (2013) The response of the South Asian summer monsoon circulation to intensified irrigation in global climate model simulations. Clim Dyn 1–16. doi:10.1007/s00382-013-1786-9
  42. Siebert S, Döll P, Feick S, Hoogeveen J (2005a) Global map of irrigated areas version 2.2. Technical report, Johann Wolfgang Goethe University, FrankfurtGoogle Scholar
  43. Siebert S, Döll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9(5):535–547. doi:10.5194/hess-9-535-2005 CrossRefGoogle Scholar
  44. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880. doi:10.5194/hess-14-1863-2010 CrossRefGoogle Scholar
  45. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  46. Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4):147–169. doi:10.1016/S0022-1694(98)00109-7 CrossRefGoogle Scholar
  47. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20). doi:10.1029/2010GL044571
  48. Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH (2008) Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys Res Lett 35(24). doi:10.1029/2008GL035296
  49. Wisser D, Fekete BM, Vorosmarty CJ, Schumann A (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24. doi:10.5194/hess-14-1-2010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2014

Authors and Affiliations

  • Benjamin I. Cook
    • 1
  • Sonali P. Shukla
    • 1
  • Michael J. Puma
    • 2
  • Larissa S. Nazarenko
    • 1
  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA
  2. 2.Center for Climate Systems Research, Earth InstituteColumbia UniversityNew YorkUSA

Personalised recommendations