Climate Dynamics

, Volume 44, Issue 9–10, pp 2839–2857 | Cite as

Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America

  • Stefan Lange
  • Burkhardt Rockel
  • Jan Volkholz
  • Bodo Bookhagen


This study provides a first thorough evaluation of the COnsortium for Small scale MOdeling weather prediction model in CLimate Mode (COSMO-CLM) over South America. Simulations are driven by ERA-Interim reanalysis data. Besides precipitation, we examine the surface radiation budget, cloud cover, 2 m temperatures, and the low level circulation. We evaluate against reanalysis data as well as observations from ground stations and satellites. Our analysis focuses on the sensitivity of results to the convective parametrization in comparison to their sensitivity to the representation of non-precipitating subgrid-scale clouds in the parametrization of radiation. Specifically, we compare simulations with a relative humidity versus a statistical subgrid-scale cloud scheme, in combination with convection schemes according to Tiedtke (Mon Weather Rev 117(8):1779–1800, 1989) and from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) cycle 33r1. The sensitivity of simulated tropical precipitation to the parametrizations of convection and subgrid-scale clouds is of similar magnitude. We show that model runs with different subgrid-scale cloud schemes produce substantially different cloud ice and liquid water contents. This impacts surface radiation budgets, and in turn convection and precipitation. Considering all evaluated variables in synopsis, the model performs best with the (both non-default) IFS and statistical schemes for convection and subgrid-scale clouds, respectively. Despite several remaining deficiencies, such as a poor simulation of the diurnal cycle of precipitation or a substantial austral summer warm bias in northern Argentina, this new setup considerably reduces long-standing model biases, which have been a feature of COSMO-CLM across tropical domains.


South America COSMO-CLM Clouds Convection  Precipitation Radiation 



This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Map plots were made using the R package ncdf4Utils (Bhend and Rockel 2011). The authors appreciate observational data provision by the TRMM, ISCCP, NASA/GEWEX, CRU, ECMWF, and INPE/CPTEC. We thank Celso von Randow for his help on the flux tower data and Jürgen Kurths for his encouragement to write this paper. Comments by two anonymous reviewers helped to improve the quality of the manuscript and are gratefully acknowledged.


  1. Avgoustoglou A (2011) Various Implementations of a Cloud Scheme in COSMO model. COSMO Newsletter 11, Deutscher WetterdienstGoogle Scholar
  2. Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113(G1):G00B01. doi: 10.1029/2007JG000644 Google Scholar
  3. Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Köhler M, Miller M, Redelsperger JL (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart J Roy Meteor Soc 130(604):3119–3137. doi: 10.1256/qj.03.103 CrossRefGoogle Scholar
  4. Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Quart J Roy Meteor Soc 134(634):1337–1351. doi: 10.1002/qj.289 CrossRefGoogle Scholar
  5. Bechtold P, Semane N, Lopez P, Chaboureau JP, Beljaars A, Bormann N (2014) Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci 71(2):734–753. doi: 10.1175/JAS-D-13-0163.1 CrossRefGoogle Scholar
  6. Betts AK, Jakob C (2002) Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J Geophys Res D Atmos 107(D20):LBA 12-1–LBA 12-8. doi: 10.1029/2001JD000427 Google Scholar
  7. Bhend J, Rockel B (2011) ncdf4Utils 0.5-1.
  8. Boers N, Bookhagen B, Marwan N, Kurths J, Marengo JA (2013) Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys Res Lett 40:4386–4392CrossRefGoogle Scholar
  9. Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35(6):L06403. doi: 10.1029/2007GL032011
  10. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. doi: 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 CrossRefGoogle Scholar
  11. Carvalho LMV, Jones C, Posadas AND, Quiroz R, Bookhagen B, Liebmann B (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25(13):4600–4620. doi: 10.1175/JCLI-D-11-00335.1 CrossRefGoogle Scholar
  12. Cook B, Zeng N, Yoon JH (2011) Will amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact 16(3):1–27. doi: 10.1175/2011EI398.1 CrossRefGoogle Scholar
  13. Correia FWS, Alvalá RCS, Manzi AO (2008) Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theor Appl Climatol 93(3–4):225–244. doi: 10.1007/s00704-007-0335-z CrossRefGoogle Scholar
  14. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  15. Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res D Atmos 104(D6):6377–6402. doi: 10.1029/98JD02720 CrossRefGoogle Scholar
  16. Davies HC (1976) A laterul boundary formulation for multi-level prediction models. Quart J Roy Meteor Soc 102(432):405–418. doi: 10.1002/qj.49710243210 Google Scholar
  17. Davin EL, Seneviratne SI (2011) Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosci Dis 8(6):11601–11630CrossRefGoogle Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  19. Dickinson R, Henderson-Sellers A, Kennedy P, Wilson M (1986) Biosphere-atmosphere transfer scheme (BATS) forcing the ncar community climate model. NCAR Technical Note TN275+STR, NCARGoogle Scholar
  20. Dickinson RE (1984) Modeling Evapotranspiration for three-dimensional global climate models, vol 29, American Geophysical Union, pp 58–72. doi: 10.1029/GM029p0058
  21. Doms G, Förstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A Description of the Nonhydrostatic Regional COSMO Model. Physical Parameterization. Deutscher Wetterdienst, Part IIGoogle Scholar
  22. Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3(12):1033–1038CrossRefGoogle Scholar
  23. Fischer T, Menz C, Su B, Scholten T (2013) Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM. Int J Climatol 33:2988–3001. doi: 10.1002/joc.3643 CrossRefGoogle Scholar
  24. Garreaud RD, Vuille M, Compagnucci R, Marengo JA (2009) Present-day South American climate. Palaeogeogr Palaeocl 281(3–4):180–195. doi: 10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  25. Geleyn JF, Hollingsworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atm 52:1–16Google Scholar
  26. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  27. Grabowski WW, Bechtold P, Cheng A, Forbes R, Halliwell C, Khairoutdinov M, Lang S, Nasuno T, Petch J, Tao WK, Wong R, Wu X, Xu KM (2006) Daytime convective development over land: a model intercomparison based on LBA observations. Quart J Roy Meteor Soc 132(615):317–344. doi: 10.1256/qj.04.147 CrossRefGoogle Scholar
  28. Gregory D, Morcrette JJ, Jakob C, Beljaars ACM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart J Roy Meteor Soc 126(566):1685–1710CrossRefGoogle Scholar
  29. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol in press, doi: 10.1002/joc.3711
  30. Hohenegger C, Brockhaus P, Schar C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17(4):383–394. doi: 10.1127/0941-2948/2008/0303 CrossRefGoogle Scholar
  31. Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22(19):5003–5020. doi: 10.1175/2009JCLI2604.1 CrossRefGoogle Scholar
  32. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  33. Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367. doi: 10.1127/0941-2948/2008/0301 CrossRefGoogle Scholar
  34. Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41(11–12):2921–2936. doi: 10.1007/s00382-012-1644-1 CrossRefGoogle Scholar
  35. Jones PW (1999) First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon Weather Rev 127(9):2204–2210. doi: 10.1175/1520-0493(1999)127<2204:fasocr>;2 CrossRefGoogle Scholar
  36. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140. doi: 10.1126/science.1100217 CrossRefGoogle Scholar
  37. Liebmann B, Camargo SJ, Seth A, Marengo JA, Carvalho LMV, Allured D, Fu R, Vera CS (2007) Onset and end of the rainy season in south america in observations and the ECHAM 4.5 atmospheric general circulation model. J Clim 20(10):2037–2050. doi: 10.1175/JCLI4122.1 CrossRefGoogle Scholar
  38. Liersch S, Cools J, Kone B, Koch H, Diallo M, Reinhardt J, Fournet S, Aich V, Hattermann FF (2012) Vulnerability of rice production in the inner niger delta to water resources management under climate variability and change. Environ Sci Policy 34:18–33. doi: 10.1016/j.envsci.2012.10.014 CrossRefGoogle Scholar
  39. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the ncep-ncar reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280. doi: 10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2 CrossRefGoogle Scholar
  40. Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29(15):2241–2255. doi: 10.1002/joc.1863 CrossRefGoogle Scholar
  41. Marengo JA, Ambrizzi T, da Rocha R, Alves L, Cuadra S, Valverde M, Torres R, Santos D, Ferraz S (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi: 10.1007/s00382-009-0721-6 CrossRefGoogle Scholar
  42. Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38(9–10):1829–1848. doi: 10.1007/s00382-011-1155-5 CrossRefGoogle Scholar
  43. Marengo JA, Liebmann B, Grimm AM, Misra V, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21. doi: 10.1002/joc.2254 CrossRefGoogle Scholar
  44. Mechoso CR, Robertson AW, Ropelewski CF, Grimm AM (2005) The American Monsoon Systems. In: The Global monsoon system: research and forecast: report of the International Committee of the Third International Workshop on Monsoons (IWM-III) 2–6, WMOGoogle Scholar
  45. Mellor GL (1977) The gaussian cloud model relations. J Atmos Sci 34(2):356–358. doi: 10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2 CrossRefGoogle Scholar
  46. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi: 10.1029/RG020i004p00851 CrossRefGoogle Scholar
  47. Mendes D, Souza EP, Marengo JA, Mendes MCD (2010) Climatology of extratropical cyclones over the South American-southern oceans sector. Theor Appl Climatol 100(3–4):239–250. doi: 10.1007/s00704-009-0161-6 CrossRefGoogle Scholar
  48. Molion LCB (1993) Amazonia rainfall and its variability, International Hydrology Series. Cambrigde University Press, CambrigdeGoogle Scholar
  49. Morcrette JJ, Barker HW, Cole JNS, Iacono MJ, Pincus R (2008) Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon Weather Rev 136(12):4773–4798. doi: 10.1175/2008MWR2363.1 CrossRefGoogle Scholar
  50. Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669. doi: 10.1038/372666a0 CrossRefGoogle Scholar
  51. Nicolini M, Salio P, Katzfey JJ, McGregor JL, Saulo AC (2002) January and July regional climate simulation over South America. J Geophys Res D Atmos 107(D22):ACL 12-1–ACL 12-13. doi: 10.1029/2001JD000736 CrossRefGoogle Scholar
  52. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. doi: 10.1175/JCLI-D-11-00375.1 CrossRefGoogle Scholar
  53. Nogués-Paegle J, Mechoso CR, Fu R, Berbery EH, Chao WC, Chen TC, Cook K, Diaz AF, Enfield D, Ferreira R, Grimm AM, Kousky V, Liebmann B, Marengo JA, Mo K, Neelin JD, Paegle J, Robertson AW, Seth A, Vera CS, Zhou J (2002) Progress in pan American CLIVAR research: understanding the South American monsoon. Meteorologica 27(1):3–32Google Scholar
  54. Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2013) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at \(0.44^\circ\) and \(0.22^\circ\) resolution. Clim Dyn. doi: 10.1007/s00382-013-1834-5
  55. Parry ML, Canziani OF, Palutikof JP, van der Linder PJ, Hanson CE (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, chap IPCC, 2007: Summary for Policymakers, pp 7–22Google Scholar
  56. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84(11):1547–1564. doi: 10.1175/BAMS-84-11-1547 CrossRefGoogle Scholar
  57. Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsletter 1, Deutscher WetterdienstGoogle Scholar
  58. Rickenbach TM, Ferreira RN, Halverson JB, Herdies DL (2002) Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J Geophys Res D Atmos 107(D20):LBA 7-1–LBA 7-13. doi: 10.1029/2000JD000263 CrossRefGoogle Scholar
  59. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi: 10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2 CrossRefGoogle Scholar
  60. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res D Atmos 114(D10):D10108. doi: 10.1029/2008JD010212
  61. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498. doi: 10.1127/0941-2948/2008/0297 CrossRefGoogle Scholar
  62. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  63. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 CrossRefGoogle Scholar
  64. Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34(9):L09708. doi: 10.1029/2007GL029695
  65. Saleska SR, da Rocha HR, Huete AR, Nobre AD, Artaxo P, Shimabukuro YE (2009) LBA-ECO CD-32 Brazil Flux Network Integrated Data: 1999–2006. Data set. Available on-line: [] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA and [] from LBA Data and Information System, National Institute for Space Research (INPE/CPTEC), Cachoeira Paulista, Sao Paulo, Brazil
  66. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon Weather Rev 135(4):1290–1309. doi: 10.1175/MWR3305.1 CrossRefGoogle Scholar
  67. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250. doi: 10.1073/pnas.1222460110
  68. Schrodin R, Heise E (2001) The multi-layer version of the DWD soil model TERRA-LM. COSMO Technical Report 2, Deutscher WetterdienstGoogle Scholar
  69. Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I: reanalyses boundary forcing. J Clim 16(15):2437–2453CrossRefGoogle Scholar
  70. Santos e Silva CM, de Freitas SR, Gielow R (2012) Numerical simulation of the diurnal cycle of rainfall in SW Amazon basin during the 1999 rainy season: the role of convective trigger function. Theor Appl Climatol 109(3–4):473–483. doi: 10.1007/s00704-011-0571-0 CrossRefGoogle Scholar
  71. Silva Dias MAF, Petersen W, Cifelli R, Betts AK, Longo M, Gomes AM, Fisch GF, Lima MA, Antonio MA, Albrecht RI (2002) A case study of convective organization into precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA. J Geophys Res D Atmos 107(D20):LBA 46-1–LBA 46-23. doi: 10.1029/2001JD000375 Google Scholar
  72. Slingo JM (1987) The development and verification of a cloud prediction scheme for the ecmwf model. Quart J Roy Meteor Soc 113(477):899–927. doi: 10.1002/qj.49711347710 CrossRefGoogle Scholar
  73. Smagorinsky J (1960) On the dynamical prediction of large-scale condensation by numerical methods, American Geophysical Union, pp 71–78. doi: 10.1029/GM005p0071
  74. Solman SA, Sanchez E, Samuelsson P, Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Treut H, Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157. doi: 10.1007/s00382-013-1667-2 CrossRefGoogle Scholar
  75. Sommeria G, Deardorff JW (1977) Subgrid-scale condensation in models of nonprecipitating clouds. J Atmos Sci 34(2):344–355. doi: 10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2 CrossRefGoogle Scholar
  76. Stackhouse PWJ, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21(1):10–12, NASAGoogle Scholar
  77. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi: 10.1007/s00703-001-0592-9 CrossRefGoogle Scholar
  78. Stocker T, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chap IPCC, 2013: Summary for PolicymakersGoogle Scholar
  79. Taylor CM, de Jeu RAM, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489(7416):423–426. doi: 10.1038/nature11377 CrossRefGoogle Scholar
  80. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi: 10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2 CrossRefGoogle Scholar
  81. Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59(12):1917–1942. doi: 10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2 CrossRefGoogle Scholar
  82. Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophys Res Lett 40(18):4887–4892. doi: 10.1002/grl.50940 Google Scholar
  83. Vera CS, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo JA, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000. doi: 10.1175/JCLI3896.1 CrossRefGoogle Scholar
  84. Vera CS, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33(13):L13707. doi: 10.1029/2006GL025759
  85. Žagar N, Andersson E, Fisher M (2005) Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quart J Roy Meteor Soc 131(607):987–1011. doi: 10.1256/qj.04.54 CrossRefGoogle Scholar
  86. Žagar N, Skok G, Tribbia J (2011) Climatology of the ITCZ derived from ERA Interim reanalyses. J Geophys Res D Atmos 116(D15):D15103. doi: 10.1029/2011JD015695
  87. Wagner S, Fast I, Kaspar F (2011) Climatic changes between 20th century and pre-industrial times over South America in regional model simulations. Clim Past Discuss 7(5):2981–3022. doi: 10.5194/cpd-7-2981-2011 CrossRefGoogle Scholar
  88. Warszawski L, Friend A, Ostberg S, Frieler K, Lucht W, Schaphoff S, Beerling D, Cadule P, Ciais P, Clark DB, Kahana R, Ito A, Keribin R, Kleidon A, Lomas M, Nishina K, Pavlick R, Rademacher TT, Buechner M, Piontek F, Schewe J, Serdeczny O, Schellnhuber HJ (2013) A multi-model analysis of risk of ecosystem shifts under climate change. Environ Res Lett 8(4), doi: 10.1088/1748-9326/8/4/044018
  89. Xu J, Small EE (2002) Simulating summertime rainfall variability in the North American monsoon region: the influence of convection and radiation parameterizations. J Geophys Res D Atmos 107(D23):-ACL 22-1–-ACL 22-17. doi: 10.1029/2001JD002047 Google Scholar
  90. Zahn M, von Storch H (2008) A long-term climatology of North Atlantic polar lows. Geophys Res Lett 35(22), doi: 10.1029/2008GL035769
  91. Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040. doi: 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Lange
    • 1
    • 2
  • Burkhardt Rockel
    • 3
  • Jan Volkholz
    • 1
  • Bodo Bookhagen
    • 4
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Department of PhysicsHumboldt UniversityBerlinGermany
  3. 3.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  4. 4.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations