Climate Dynamics

, Volume 44, Issue 5–6, pp 1329–1349 | Cite as

Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs

  • Daniel F. Steinhoff
  • Andrew J. Monaghan
  • Martyn P. Clark
Article

Abstract

Due to the importance that the El Niño-Southern Oscillation (ENSO) has on rainfall over the tropical Americas, future changes in ENSO characteristics and teleconnections are important for regional hydroclimate. Projected changes to the ENSO mean state and characteristics, and the resulting impacts on rainfall anomalies over Central America, Colombia, and Ecuador during the twenty-first century are explored for several forcing scenarios using a suite of coupled atmosphere–ocean global climate models (AOGCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Mean-state warming of eastern tropical Pacific sea surface temperatures, drying of Central America and northern Colombia, and wetting of southwest Colombia and Ecuador are consistent with previous studies that used earlier versions of the AOGCMs. Current and projected future characteristics of ENSO (frequency, duration, amplitude) show a wide range of values across the various AOGCMs. The magnitude of ENSO-related rainfall anomalies are currently underestimated by most of the models, but the model ensembles generally simulate the correct sign of the anomalies across the seasons around the peak ENSO effects. While the models capture the broad present-day ENSO-related rainfall anomalies, there is not a clear sense of projected future changes in the precipitation anomalies.

Keywords

ENSO CMIP5 Precipitation Teleconnections 

References

  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524Google Scholar
  2. Amador JA (1998) A climatic feature of tropical Americas: the trade wind easterly jet. Top Meteorol Oceanogr 5:91–102Google Scholar
  3. An SI, Kug JS, Ham YG, Kang IS (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21:3–21. doi:10.1175/2007JCLI1500.1 Google Scholar
  4. Boulanger JP, Martinez F, Segura EC (2007) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi:10.1007/s00382-006-0182-0 Google Scholar
  5. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim Change 4:111–116. doi:10.1038/NCLIMATE2100 Google Scholar
  6. Chen AA, Taylor MA (2002) Investigating the link between early season Caribbean rainfall and the El Niño + 1 year. Int J Climatol 22:87–106. doi:10.1002/joc.711 Google Scholar
  7. Chiang JCH, Kushnir Y, Zebiak SE (2000) Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys Res Lett 27:3687–3690Google Scholar
  8. Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res 107:D14004. doi:10.1029/2000JD000307 Google Scholar
  9. Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215. doi:10.1007/s00382-010-0912-1 Google Scholar
  10. Chou C, Chen CA, Tan PH, Chen KT (2012) Mechanisms for global warming impacts on precipitation frequency and intensity. J Clim 25:3291–3306. doi:10.1175/JCLI-D-11-00239.1 Google Scholar
  11. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397. doi:10.1038/ngeo868 Google Scholar
  12. Curtis S, Hastenrath S (1995) Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100(C8):15835–15847Google Scholar
  13. Deser C, Phillips AS, Tomas RA, Okumura Y, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2012) ENSO and pacific decadal variability in community climate system model version 4. J Clim 25:2622–2651. doi:10.1175/JCLI-D-11-00301.1 Google Scholar
  14. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee SK (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892. doi:10.1175/2009JCLI2982.1 Google Scholar
  15. Durán-Quesada AM, Gimeno L, Amador JA, Nieto R (2010) Moisture sources for Central America: identification of moisture sources using a Lagrangian analysis technique. J Geophys Res 115:D05103. doi:10.1029/2009JD012455 Google Scholar
  16. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945Google Scholar
  17. Gastineau G, Li L, Le Treut H (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim 22:3993–4013Google Scholar
  18. Giannini A, Chiang JCH, Cane MA, Kushnir Y, Seager R (2001) The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J Clim 14:4530–4544Google Scholar
  19. Gianninni A, Kushnir AY, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311Google Scholar
  20. Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 Google Scholar
  21. Gouirand I, Moron V, Hu Z-Z, Jha B (2013) Influence of the warm pool and cold tongue El Niños on the following Caribbean rainy season rainfall. Clim Dyn. doi:10.1007/s00382-013-1753-5 Google Scholar
  22. Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25:537–554. doi:10.1007/s00477-010-0420-1 Google Scholar
  23. Grimm AM, Ambrizzi T (2009) Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. Dev Paleoenviron Res 14:159–191. doi:10.1007/978-90-481-2672-9_7 Google Scholar
  24. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi:10.1175/2008JCLI2429.1 Google Scholar
  25. Gu G, Adler RF (2006) Interannual rainfall variability in the tropical Atlantic region. J Geophys Res 111:D02106. doi:10.1029/2005JD005944 Google Scholar
  26. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348. doi:10.1007/s00382-005-0084-6 Google Scholar
  27. Hastenrath S (1976) Variations in low-latitude circulation and extreme climatic events in the tropical Americas. J Atmos Sci 33:202–215Google Scholar
  28. Hastenrath S (2002) The intertropical convergence zone of the eastern Pacific revisited. Int J Climatol 22:347–356Google Scholar
  29. Hastenrath S, Greischar L (1993) Circulation mechanisms related to northeast Brazil rainfall anomalies. J Geophys Res 98(D3):5093–5102Google Scholar
  30. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1 Google Scholar
  31. Herceg Bulić I, Branković Č, Kucharski F (2012) Winter ENSO teleconnections in a warmer climate. Clim Dyn 38:1593–1613. doi:10.1007/s00382-010-0987-8 Google Scholar
  32. Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi:10.1016/j.hydrol.2013.05.004 Google Scholar
  33. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786Google Scholar
  34. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829Google Scholar
  35. Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2:1388–1403Google Scholar
  36. Hoyos I, Baquero-Bernal A, Jacob D, Rodríguez BA (2013) Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim Dyn 40:1985–2003. doi:10.1007/s00382-012-1487-9 Google Scholar
  37. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. doi:10.1007/s00382-011-1099-9 Google Scholar
  39. Karnauskas KB (2013) Can we distinguish canonical El Niño from Modoki? Geophys Res Lett. doi:10.1002/grl.51007 Google Scholar
  40. Karnauskas KB, Busalacchi AJ (2009) The role of SST in the East Pacific warm pool in the interannual variability of Central American rainfall. J Clim 22:2605–2623Google Scholar
  41. Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36:L14802. doi:10.1029/2009GL038609 Google Scholar
  42. Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700Google Scholar
  43. Lyon B (2003) Enhanced seasonal rainfall in northern Venezuela and the extreme events of December 1999. J Clim 16:2302–2306Google Scholar
  44. Lyon B, Barnston AG (2005) ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J Clim 18:5095–5109Google Scholar
  45. Magaña V, Amador J, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588Google Scholar
  46. Mapes BE, Warner TT, Xu M, Negri AJ (2003) Diurnal patterns of rainfall in northwestern South America. Part I: observations and context. Mon Weather Rev 131:799–812Google Scholar
  47. Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi:10.1007/s00382-009-0721-6 Google Scholar
  48. Marengo JA, Chan Chou S, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi:10.1007/s00382-011-1155-5 Google Scholar
  49. Martin ER, Schumacher C (2011) The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J Clim 24:5935–5950. doi:10.1175/JCLI-D-11-00134.1 Google Scholar
  50. McGlone D, Vuille M (2012) The associations between El Niño-Southern Oscillation and tropical South American climate in a regional climate model. J Geophys Res 117:D06105. doi:10.1029/2011JD017066 Google Scholar
  51. Meehl GA, Teng H, Branstator G (2006) Future changes of El Niño in two global coupled climate models. Clim Dyn 26:549–566. doi:10.1007/s00382-005-0098-0 Google Scholar
  52. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RFJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383 Google Scholar
  53. Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027. doi:10.1175/JCLI3834 Google Scholar
  54. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181 Google Scholar
  55. Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim 24:1801–1820. doi:10.1175/2010JCLI3874.1 Google Scholar
  56. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 Google Scholar
  57. Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3 Google Scholar
  58. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115Google Scholar
  59. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479Google Scholar
  60. Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843Google Scholar
  61. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale oceanic-atmospheric phenomena. J Clim 10:2690–2702Google Scholar
  62. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678Google Scholar
  63. Poveda G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvaraz JF (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133:228–240Google Scholar
  64. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclim Palaeoecol 234:3–27. doi:10.1016/j.palaeo.2005.10.031 Google Scholar
  65. Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. doi:10.1007/s00382-010-0931-y Google Scholar
  66. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:1–21. doi:10.1002/2013WR014087 Google Scholar
  67. Power SB, Smith IN (2007) Weakening of the Walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed? Geophys Res Lett 34:L18702. doi:10.1029/2007GL030854 Google Scholar
  68. Power SB, Delage F, Colman R, Moise A (2012) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809. doi:10.1175/JCLI-D-11-00354.1 Google Scholar
  69. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature. doi:10.1038/nature12580 Google Scholar
  70. Rasmusson EM, Mo K (1993) Linkages between 200-mb tropical and extratropical circulation anomalies during the 1986–1989 ENSO cycle. J Clim 6:595–616Google Scholar
  71. Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571. doi:10.1007/s00382-007-0359-1 Google Scholar
  72. Rauscher SA, Kucharski F, Enfield DB (2011) The role of regional SST warming variations in the drying of Meso-America in future climate projections. J Clim 24:2003–2016. doi:10.1175/2010JCLI3536.1 Google Scholar
  73. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. doi:10.1029/2002JD002670 Google Scholar
  74. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1 Google Scholar
  75. Rogers JC (1988) Precipitation variability over the Caribbean and tropical Americas associated with the Southern Oscillation. J Clim 1:172–182Google Scholar
  76. Ropelewski CF, Bell MA (2008) Shifts in the statistics of daily rainfall in South America conditional on ENSO phase. J Clim 21:849–865. doi:10.1175/2007JCLI1617.1 Google Scholar
  77. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626Google Scholar
  78. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284Google Scholar
  79. Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation-precipitation relationships. J Clim 9:1043–1059Google Scholar
  80. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern Oscillation. J Clim 13:2177–2194Google Scholar
  81. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668. doi:10.1175/2010JCLI3655.1 Google Scholar
  82. Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372. doi:10.1175/JCLI-D-11-00363.1 Google Scholar
  83. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z Google Scholar
  84. Small RJO, de Szoeke SP, Xie SP (2007) The Central American midsummer drought: regional aspects and large-scale forcing. J Clim 20:4853–4873. doi:10.1175/JCLI4261.1 Google Scholar
  85. Sörensson AA, Menéndez CG, Ruscica R, Alexander P, Samuelsson P, Willén U (2010) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19:347–355. doi:10.1127/0941-2948/2010/0467 Google Scholar
  86. Stevenson S (2012) Significant changes to ENSO strength and impacts in the twenty-first century: results from CMIP5. Geophys Res Lett 39:L17703. doi:10.1029/2012GL052759 Google Scholar
  87. Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl GA (2012a) Will there be a significant change to El Niño in the twenty-first century? J Clim 25:2129–2145. doi:10.1175/JCLI-D-11-00252.1 Google Scholar
  88. Stevenson S, Fox-Kemper B, Jochum M (2012b) Understanding the ENSO–CO2 link using stabilized climate simulations. J Clim 25:7917–7936. doi:10.1175/JCLI-D-11-00546.1 Google Scholar
  89. Taylor MA, Enfield DB, Chen AA (2002) Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J Geophys Res 107:C93127. doi:10.1029/2001JC001097 Google Scholar
  90. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 Google Scholar
  91. Timmermann AJ, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697. doi:10.1038/19505 Google Scholar
  92. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777Google Scholar
  93. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319Google Scholar
  94. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021 Google Scholar
  95. van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95Google Scholar
  96. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340Google Scholar
  97. Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Interdiscip Rev Clim Change 1:260–270. doi:10.1002/wcc.33 Google Scholar
  98. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744 Google Scholar
  99. Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014. doi:10.1007/s00382-009-0534-7 Google Scholar
  100. Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759 Google Scholar
  101. Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422. doi:10.1007/s00382-007-0243-z Google Scholar
  102. Watanabe M, Kug J-S, Jin F-F, Collins M, Ohba M, Wittenberg AT (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett 39:L20703. doi:10.1029/2012GL053305 Google Scholar
  103. Waylen PR, Poveda G (2002) El Niño-Southern Oscillation and aspects of western South America hydro-climatology. Hydrol Process 16:1247–1260Google Scholar
  104. Waylen PR, Caviedes CN, Quesada ME (1996) Interannual variability of monthly precipitation in Costa Rica. J Clim 9:2606–2613Google Scholar
  105. Wu R, Kirtman BP (2011) Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Clim Dyn 37:1533–1550. doi:10.1007/s00382-010-0927-7 Google Scholar
  106. Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986Google Scholar
  107. Yasunari T (1987) Global structure of the El Niño/Southern Oscillation. Part I: El Niño composites. J Met Soc Jpn 65:67–80Google Scholar
  108. Yeh S-W, Park Y-G, Kirtman BP (2006) ENSO amplitude changes in climate change commitment to atmospheric CO2 doubling. Geophys Res Lett 33:L13711. doi:10.1029/2005GL025653 Google Scholar
  109. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–515. doi:10.1038/nature08316 Google Scholar
  110. Yeh S-W, Ham Y-G, Lee J-Y (2012) Changes in the Tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J Clim 25:7764–7771. doi:10.1175/JCLI-D-12-00304.1 Google Scholar
  111. Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett 33:L12701. doi:10.1029/2006GL025942 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel F. Steinhoff
    • 1
  • Andrew J. Monaghan
    • 1
  • Martyn P. Clark
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations