Advertisement

Climate Dynamics

, Volume 44, Issue 9–10, pp 2493–2512 | Cite as

Mid-Holocene global monsoon area and precipitation from PMIP simulations

  • Dabang JiangEmail author
  • Zhiping Tian
  • Xianmei Lang
Article

Abstract

Towards a better insight into orbital-scale changes in global monsoon, here we examine global monsoon area (GMA) and precipitation (GMP) as well as GMP intensity (GMPI) in the mid-Holocene, approximately 6,000 years ago, using all available numerical experiments from the Paleoclimate Modelling Intercomparison Project. Compared to the reference period, both the mid-Holocene GMA and GMP increased in the majority of the 35 models chosen for analysis according to their ability, averaging 5.5 and 4.2 %, respectively, which were mainly due to the increase in monsoon area and precipitation over the boreal land and austral ocean. The mid-Holocene GMPI decreased in most models and by an average of 1.2 %, mainly due to the decrease in monsoon precipitation intensity over the boreal ocean and austral land. The mid-Holocene GMA, GMP, and GMPI all showed opposite changes both between the land and ocean in the northern or southern hemisphere and between the boreal and austral land or ocean. Orbital-induced changes in large-scale meridional temperature gradient and land–sea thermal contrast are the underlying mechanisms, and the presence of an interactive ocean has an amplifying effect in the boreal land monsoon areas overall. Qualitatively, the model–data comparison indicates agreement in the boreal land monsoon areas and South America but disagreement in southern Africa and northern Australia.

Keywords

Mid-Holocene Monsoon area Monsoon precipitation PMIP simulations 

Notes

Acknowledgments

We sincerely thank the three anonymous reviewers for their insightful comments which greatly improved the paper. We also thank the climate modelling groups (listed in Table 1) for producing and sharing their model output, and thank GPCP for providing the Version 2.2 data set. This work was supported by the Strategic Priority Research Program (XDB03020602 and XDA05120703) of the Chinese Academy of Sciences and by the National Natural Science Foundation of China (41222034 and 41175072). The analyses were performed using version 8 January 2013 of the database. More information is available at http://pmip3.lsce.ipsl.fr/, http://pmip2.lsce.ipsl.fr/, and http://motif.lsce.ipsl.fr/.

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643CrossRefGoogle Scholar
  3. Bartlein PJ, Harrison SP, Brewer S, Connor S, Davis BAS, Gajewski K, Guiot J, Harrison-Prentice TI, Henderson A, Peyron O, Prentice IC, Scholze M, Seppä H, Shuman B, Sugita S, Thompson RS, Viau AE, Williams J, Wu H (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802CrossRefGoogle Scholar
  4. Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  5. Biasutti M, Battisti DS, Sarachik ES (2003) The annual cycle over the tropical Atlantic, South America, and Africa. J Clim 16:2491–2508CrossRefGoogle Scholar
  6. Bosmans JHC, Drijfhout SS, Tuenter E, Lourens LJ, Hilgen FJ, Weber SL (2012) Monsoonal response to mid-holocene orbital forcing in a high resolution GCM. Clim Past 8:723–740CrossRefGoogle Scholar
  7. Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484CrossRefGoogle Scholar
  8. Braconnot P, Joussaume S, de Noblet N, Ramstein G (2000) Mid-Holocene and last glacial maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project. Glob Planet Chang 26:51–66CrossRefGoogle Scholar
  9. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  10. Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Chang 2:417–424CrossRefGoogle Scholar
  11. Cheng H, Sinha A, Wang X, Cruz FW, Edwards RL (2012) The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn 39:1045–1062CrossRefGoogle Scholar
  12. COHMAP Members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052CrossRefGoogle Scholar
  13. Dallmeyer A, Claussen M, Otto J (2010) Contribution of oceanic and vegetation feedbacks to Holocene climate change in monsoonal Asia. Clim Past 6:195–218CrossRefGoogle Scholar
  14. Dallmeyer A, Claussen M, Wang Y, Herzschuh U (2013) Spatial variability of Holocene changes in the annual precipitation pattern: a model-data synthesis for the Asian monsoon region. Clim Dyn 40:2919–2936CrossRefGoogle Scholar
  15. Dias de Melo ML, Marengo JA (2008) The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: simulation of climate during the mid Holocene. Holocene 18:501–516CrossRefGoogle Scholar
  16. Fasullo J (2012) A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Clim Dyn 39:1137–1147CrossRefGoogle Scholar
  17. Fitzsimmons KE, Cohen TJ, Hesse PP, Jansen J, Nanson GC, May JH, Barrows TT, Haberlah D, Hilgers A, Kelly T, Larsen J, Lomax J, Treble P (2013) Late Quaternary palaeoenvironmental change in the Australian drylands. Quat Sci Rev 74:78–96CrossRefGoogle Scholar
  18. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739CrossRefGoogle Scholar
  19. Guo Z, Zhou X, Wu H (2012) Glacial–interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn 39:1073–1092CrossRefGoogle Scholar
  20. Hargreaves JC, Annan JD, Ohgaito R, Paul A, Abe-Ouchi A (2013) Skill and reliability of climate model ensembles at the last glacial maximum and mid-Holocene. Clim Past 9:811–823CrossRefGoogle Scholar
  21. Harrison SP, Kutzbach JE, Liu Z, Bartlein PJ, Otto-Bliesner B, Muhs D, Prentice IC, Thompson RS (2003) Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Clim Dyn 20:663–688Google Scholar
  22. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  23. Hsu P, Li T, Luo JJ, Murakami H, Kitoh A, Zhao M (2012) Increase of global monsoon area and precipitation under global warming: a robust signal? Geophys Res Lett 39:L06701. doi: 10.1029/2012GL051037 Google Scholar
  24. Hsu P, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res Atmos 118:1247–1260. doi: 10.1002/jgrd.50145 CrossRefGoogle Scholar
  25. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  26. Jiang D, Lang X, Tian Z, Ju L (2013a) Mid-Holocene East Asian summer monsoon strengthening: insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Paleogeogr Paleoclimatol Paleoecol 369:422–429CrossRefGoogle Scholar
  27. Jiang D, Tian Z, Lang X (2013b) Mid-Holocene net precipitation changes over China: model–data comparison. Quat Sci Rev 82:104–120CrossRefGoogle Scholar
  28. Jolly D, Harrison SP, Damnati B, Bonnefille R (1998a) Simulated climate and biomes of Africa during the Late Quaternary: comparison with pollen and lake status data. Quat Sci Rev 17:629–657CrossRefGoogle Scholar
  29. Jolly D, Prentice IC, Bonnefille R, Ballouche A, Bengo M, Brenac P, Buchet G, Burney D, Cazet JP, Cheddadi R, Edorh T, Elenga H, Elmoutaki S, Guiot J, Laarif F, Lamb H, Lezine AM, Maley J, Mbenza M, Peyron O, Reille M, Reynaud-Farrera I, Riollet G, Ritchie JC, Roche E, Scott L, Ssemmanda I, Straka H, Umer M, van Campo E, Vilimumbalo S, Vincens A, Waller M (1998b) Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian Peninsula at 0 and 6000 years. J Biogeogr 25:1007–1027CrossRefGoogle Scholar
  30. Joussaume S, Taylor KE (1995) Status of the Paleoclimate Modeling Intercomparison Project (PMIP). In: Gates WL (ed) Proceedings of the first international AMIP scientific conference, WCRP-92, WMO/TD-732. World Meteorological Organization, Geneva, pp 425–430Google Scholar
  31. Joussaume S, Taylor KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli AJ, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Jolly D, Kim JW, Kislov A, Kitoh A, Loutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes P, Vettoretti G, Webb RS, Wyputta U (1999) Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26:859–862CrossRefGoogle Scholar
  32. Kim HJ, Wang B, Ding Q (2008) The global monsoon variability simulated by CMIP3 coupled climate models. J Clim 21:5271–5294CrossRefGoogle Scholar
  33. Kitoh A, Endo H, Kumar KK, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118:3053–3065. doi: 10.1002/jgrd.50258 CrossRefGoogle Scholar
  34. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443CrossRefGoogle Scholar
  35. Lau KM, Weng H (2002) Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. J Meteorol Soc Jpn 80:1309–1324CrossRefGoogle Scholar
  36. Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119CrossRefGoogle Scholar
  37. Liu T, Ding Z (1998) Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci 26:111–145CrossRefGoogle Scholar
  38. Liu Z, Harrison SP, Kutzbach J, Otto-Bliesner B (2004) Global monsoons in the mid-Holocene and oceanic feedback. Clim Dyn 22:157–182CrossRefGoogle Scholar
  39. Liu J, Wang B, Ding Q, Kuang X, Soon W, Zorita E (2009) Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J Clim 22:2356–2371CrossRefGoogle Scholar
  40. Liu J, Wang B, Yim SY, Lee JY, Jhun JG, Ha KJ (2012) What drives the global summer monsoon over the past millennium? Clim Dyn 39:1063–1072CrossRefGoogle Scholar
  41. Nanson GC, Price DM, Short SA, Young RW, Jones BG (1991) Comparative uranium–thorium dating and thermoluminescence dating of weathered Quaternary alluvium in the tropics of northern Australia. Quat Res 35:347–366CrossRefGoogle Scholar
  42. Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late Quaternary: biome reconstructions based on a global scheme of plant functional types. Paleogeogr Paleoclimatol Paleoecol 289:44–61CrossRefGoogle Scholar
  43. Nott J, Price D (1994) Plunge pools and paleoprecipitation. Geology 22:1047–1050CrossRefGoogle Scholar
  44. Peyron O, Jolly D, Braconnot P, Bonnefille R, Guiot J, Wirrmann D, Chalié F (2006) Quantitative reconstructions of annual rainfall in Africa 6000 years ago: model-data comparison. J Geophys Res 111:D24110. doi: 10.1029/2006JD007396 CrossRefGoogle Scholar
  45. Pickett EJ, Harrison SP, Hope G, Harle K, Dodson JR, Kershaw AP, Prentice IC, Backhouse J, Colhoun EA, D’Costa D, Flenley J, Grindrod J, Haberle S, Hassell C, Kenyon C, Macphail M, Martin H, Martin AH, McKenzie M, Newsome JC, Penny D, Powell J, Raine JI, Southern W, Stevenson J, Sutra JP, Thomas I, van der Kaars S, Ward J (2004) Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. J Biogeogr 31:1381–1444CrossRefGoogle Scholar
  46. Prentice IC, Jolly D, BIOME 6000 participants (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519CrossRefGoogle Scholar
  47. Qin B, Yu G (1998) Implications of lake level variations at 6 ka and 18 ka in mainland Asia. Glob Planet Chang 18:59–72CrossRefGoogle Scholar
  48. Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57Google Scholar
  49. Sifeddine A, Martin L, Turcq B, Volkmer-Ribeiro C, Soubiès F, Cordeiro RC, Suguio K (2001) Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Paleogeogr Paleoclimatol Paleoecol 168:221–235CrossRefGoogle Scholar
  50. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  51. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  52. Tian Z, Jiang D (2013) Mid-Holocene ocean and vegetation feedbacks over East Asia. Clim Past 9:2153–2171CrossRefGoogle Scholar
  53. Tjallingii R, Claussen M, Stuut JBW, Fohlmeister J, Jahn A, Bickert T, Lamy F, Rohl U (2008) Coherent high- and low-latitude control of the northwest African hydrological balance. Nat Geosci 1:670–675CrossRefGoogle Scholar
  54. Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993CrossRefGoogle Scholar
  55. Turcq B, Albuquerque ALS, Cordeiro RC, Sifeddine A, Simoes Filho FFL, Souza AG, Abrão JJ, Oliveira FBL, Silva AO, Capitâneo J (2002) Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sediment Geol 148:319–342CrossRefGoogle Scholar
  56. Wang HJ (1999) Role of vegetation and soil in the Holocene megathermal climate over China. J Geophys Res 104(D8):9361–9367CrossRefGoogle Scholar
  57. Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183CrossRefGoogle Scholar
  58. Wang B, Wu R, Lau KM (2001) Interannual variability of Asian summer monsoon: contrast between the Indian and western North Pacific-East Asian monsoons. J Clim 14:4073–4090CrossRefGoogle Scholar
  59. Wang X, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743CrossRefGoogle Scholar
  60. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093CrossRefGoogle Scholar
  61. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135CrossRefGoogle Scholar
  62. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  63. Weldeab S, Lea DW, Schneider RR, Andersen N (2007) 155,000 years of West African monsoon and ocean thermal evolution. Science 316:1303–1307CrossRefGoogle Scholar
  64. Wu H, Guiot J, Brewer S, Guo Z (2007) Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim Dyn 29:211–229CrossRefGoogle Scholar
  65. Wyrwoll KH, Miller GH (2001) Initiation of the Australian summer monsoon 14,000 years ago. Quat Int 83–85:119–128CrossRefGoogle Scholar
  66. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  67. Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu Q, Liu KB, Prentice IC, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, Van Campo E, Xia Y, Xu Q, Yan S, Yang X, Zhao J, Zheng Z (2000) Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. J Biogeogr 27:635–664CrossRefGoogle Scholar
  68. Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578CrossRefGoogle Scholar
  69. Zhao Y, Harrison SP (2012) Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim Dyn 39:1457–1487CrossRefGoogle Scholar
  70. Zheng W, Wu B, He J, Yu Y (2013) The East Asian summer monsoon at mid-Holocene: results from PMIP3 simulations. Clim Past 9:453–466CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Centre on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and Technology (NUIST)NanjingChina
  3. 3.International Centre for Climate and Environment Sciences, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Climate Change Research CentreChinese Academy of SciencesBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations