Advertisement

Climate Dynamics

, Volume 44, Issue 3–4, pp 633–659 | Cite as

Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia

  • Jatin Kala
  • Julia Andrys
  • Tom J. Lyons
  • Ian J. Foster
  • Bradley J. Evans
Article

Abstract

Regional climate models are sensitive to the forcing data used, as well as different model physics options. Additionally, the behaviour of physics parameterisations may vary depending on the location of the domain due to different climatic regimes. In this study, we carry out a sensitivity analysis of the weather research and forecasting model to different driving data and model physics options over a 10-km resolution domain in the southwest of Western Australia, a region with Mediterranean climate. Simulations are carried out on a seasonal time-scale, in order to better inform future long-term regional climate simulations for this region. We show that the choice of radiation scheme had a strong influence on both temperature and precipitation; the choice of planetary boundary layer scheme has a particularly large influence on minimum temperatures; and, the choice of cumulus scheme or more complex micro-physics did not strongly influence precipitation simulations. More importantly, we show that the same radiation scheme, when used with different driving data, can lead to different results.

Keywords

Dynamical downscaling Physics parameterisation Regional climate modeling WRF 

Notes

Acknowledgments

This research is funded by the Australian Grains Research and Development Grant (MCV00013). All WRF simulations were supported by iVEC (http://www.ivec.org/) through the use of advanced computing resources provided by the Pawsey Super-Computing Centre located at Murdoch University, Perth, Western Australia, through the National Computational Merit Allocation Scheme. Jatin Kala is supported by the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). Julia Andrys is supported by an Australian Postgraduate Award and a Grains Industry Research Scholarship. NOAA_OI_SST_V2 data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. The NNRP and NCEP-FNL data for this study are from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at NCAR. NCAR is sponsored by the National Science Foundation (NSF). The original data are available from the RDA (http://dss.ucar.edu) in dataset number ds090.0 and ds083.2 respectively. ERA-interim data were obtained from the ECMWF data server (http://data-portal.ecmwf.int/data/d/interim_daily/). The comments of two anonymous reviews helped to further enhance the quality of this manuscript. All this support is gratefully acknowledged.

References

  1. ABS (2010) Australian Bureau of Statistics (ABS) year book: agriculture. http://www.abs.gov.au
  2. Andrich MA, Imberger J (2013) The effect of land clearing on rainfall and fresh water resources in western australia: a multi-functional sustainability analysis. Int J Sustain Dev World Ecol 20:549–563. doi: 10.1080/13504509.2013.850752 CrossRefGoogle Scholar
  3. Argüeso D, Hidalgo-Muñoz J, Gámiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Díez Y (2011) Evaluation of wrf parameterizations for climate studies over southern spain using a multistep regionalization. J Clim 24:5633–5651. doi: 10.1175/JCLI-D-11-00073.1 CrossRefGoogle Scholar
  4. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Castro-Díez Y (2012) High-resolution projections of mean and extreme precipitation over spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res Atmos 117(D12). doi: 10.1029/2011JD017399
  5. Awan NK, Truhetz H, Gobiet A (2011) Parameterization-induced error characteristics of mm5 and wrf operated in climate mode over the alpline region: an ensemble-based analysis. J Clim 24:3107–3123CrossRefGoogle Scholar
  6. Bates B, Hope P, Ryan B, Smith I, Charles S (2008) Key findings from the indian ocean climate initiative and their impact on policy development in Australia. Clim Change 89:339–354. doi: 10.1007/s10584-007-9390-9 CrossRefGoogle Scholar
  7. Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691Google Scholar
  8. Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using gate wave, bomex, atex and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709Google Scholar
  9. Bowden JH, Otte TL, Nolte CG, Otte MJ (2011) Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J Clim 25:2805–2823. doi: 10.1175/JCLI-D-11-00167.1 CrossRefGoogle Scholar
  10. Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteorol Climatol 48:2152–2159. doi: 10.1175/2009JAMC2186.1 CrossRefGoogle Scholar
  11. Bukovsky MS, Karoly DJ (2011) A regional modeling study of climate change impacts on warm-season precipitation in the central U.S. J Clim 24:1985–2002. doi: 10.1175/2010JCLI3447.1 CrossRefGoogle Scholar
  12. Caldwell P, Chin HN, Bader D, Bala G (2009) Evaluation of a WRF dynamical downscaling simulation over california. Clim Change 95:499–521. doi: 10.1007/s10584-009-9583-5 CrossRefGoogle Scholar
  13. Chen F, Dudhia J (201) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  14. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon Weather Rev 129:587–604. doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  15. Collins RKM, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski W, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Collins WD, Rash PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR technical note NCAR/TN-464+STR, NCARGoogle Scholar
  17. Crétat J, Pohl B, Richard Y, Drobinski P (2011) Uncertainties in simulating regional climate of southern africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634. doi: 10.1007/s00382-011-1055-8 CrossRefGoogle Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  19. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  20. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22). doi: 10.1029/2002JD003296
  21. Evans BJ, Lyons T (2013) Bioclimatic extremes drive forest mortality in southwest, Western Australia. Climate 1:28–52. doi: 10.3390/cli1020028 CrossRefGoogle Scholar
  22. Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39(10). doi: 10.1029/2012GL052014
  23. Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s murray-darling basin: a multitemporal assessment. J Geophys Res 115(D14):114. doi: 10.1029/2010JD013816 Google Scholar
  24. Evans JP, Ekström M, Ji F (2011) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39:1241–1258. doi: 10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  25. Fersch B, Kunstmann H, Bárdossy A, Devaraju B, Sneeuw N (2012) Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with grace-derived observations. J Hydrometeorol 13:1589–1603. doi: 10.1175/JHM-D-11-0143.1 CrossRefGoogle Scholar
  26. Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105CrossRefGoogle Scholar
  27. Gentilli J (1971) Australian climate patterns. Thomas Nelson (Australia) Limited, Melbourne, p 285Google Scholar
  28. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the cordex framework. WMO Bull 58:175–183Google Scholar
  29. van Gool D, Vernon L (2005) Potential impacts of climate change on agriculture and land use suitability: wheat. Government of Western Australia, Department of agriculture and food, resource management technial report, p 295Google Scholar
  30. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  31. Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844. doi: 10.1175/2010JAMC2432.1 CrossRefGoogle Scholar
  32. Huang X, Lyons TJ, Smith RCG (1995) Meteorological impact of replacing native perennial vegetation with annual agricultural species. Hydrol Process 9:645–654CrossRefGoogle Scholar
  33. Hughes L (2003) Climate change and Australia: trends, projections and impacts. Aust Ecol 28:423–443CrossRefGoogle Scholar
  34. Hughes L, Westoby M, Cawsey EM (1993) Climate range sizes of eucalyptus species in relation to future climate change. Glob Ecol Biogeogr Lett 5:23–29CrossRefGoogle Scholar
  35. Hutchinson MF, Stein JA, Stein JL (2009) Geodata 9 second digital elevation model (dem-9s) version 3. http://www.ga.gov.au/
  36. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi: 10.1029/2008JD009944
  37. Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  38. Janjić ZI (2000) Comments on “development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57:3686–3686CrossRefGoogle Scholar
  39. Jankov I, Gallus WA, Segal M, Shaw B, Koch SE (2005) The impact of different wrf model physical parameterizations and their interactions on warm season MCS rainfall. Weather Forecast 20:1048–1060. doi: 10.1175/WAF888.1 CrossRefGoogle Scholar
  40. Jin J, Miller NL, Schlegel N (2010) Sensitivity study of four land surface schemes in the WRF model. Adv Meteorol 11. doi: 10.1155/2010/167436
  41. Jones DA, Wang W, Fawcett R (2009) High-qaulity spatial climate data-sets for Australia. Aust Meteorol Oceanogr Soc J 58:233–248Google Scholar
  42. Kain JS (2004) The kain-fritsch convective parameterization: an update. J ApplMeteorol Climatol 43:170–181Google Scholar
  43. Kala J, Lyons TJ, Nair US (2010) Numerical simulations of the impacts of land-cover change on cold fronts in South-West Western Australia. Bound Layer Meteorol 138:121–138. doi: 10.1007/s10546-010-9547-3 CrossRefGoogle Scholar
  44. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  45. Kim EJ, Song SY (2010) Impact of air–sea interaction on east asian summer monsoon climate in WRF. J Geophys Res 115(D19):118. doi: 10.1029/2009JD013253 Google Scholar
  46. King AD, Alexander LV, Donat MG (2013) The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia. Int J Climatol 33:2376–2387. doi: 10.1002/joc.3588 CrossRefGoogle Scholar
  47. Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western U. S. simulated by the WRF regional climate model. Geophys Res Lett 36(L03):820. doi: 10.1029/2008GLO036445 Google Scholar
  48. Liang XZ, Choi HI, Kunkel KE, Dai Y, Joseph E, Wang JXL, Kumar P (2005) Surface boundary conditions for mesoscale regional climate models. Earth Interact 9(18):1–28CrossRefGoogle Scholar
  49. Lim KSS, Hong SY (2009) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612CrossRefGoogle Scholar
  50. Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12:3601–3610. doi: 10.5194/acp-12-3601-2012 CrossRefGoogle Scholar
  51. Lo JCF, Yang ZL, Pielke RA (2008) Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. J Geophys Res 113(D09):112. doi: 10.1029/2007JD009216 Google Scholar
  52. Lobell DB, Sibley A (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change 2:186–189CrossRefGoogle Scholar
  53. Lyons TJ (2002) Clouds prefer native vegetation. Meteorol Atmos Phys 80:131–140. doi: 10.1007/s007030200020 CrossRefGoogle Scholar
  54. Lyons TJ, Huang X, Schwerdtfeger P, Hacker JM, Foster IJ, Smith RCG (1993) Land-atmosphere interaction in a semiarid region: the Bunny Fence experiment. Bull Am Meteorol Soc 74:1327–1334. doi: 10.1175/1520-0477(1993)074<1327:LIIASR>2.0.CO;2 CrossRefGoogle Scholar
  55. Ma Y, Lyons TJ (2000) Numerical simulation of a sea-breeze under dominant synoptic conditions at perth. Meteorol Atmos Phys 73:89–103CrossRefGoogle Scholar
  56. Ma Y, Lyons TJ, Blockley JA (2001) Surface influences on the australian west coast trough. Meteorol Atmos Phys 68:207–217Google Scholar
  57. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  58. Moise AF, Hudson DA (2008) Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J Geophys Res Atmos 113(D15). doi: 10.1029/2007JD009250
  59. Mooney PA, Mulligan FJ, Fealy R (2012) Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–1995. J Clim 26:1002–1017. doi: 10.1175/JCLI-D-11-00676.1 CrossRefGoogle Scholar
  60. Nair US, Wu Y, Kala J, Lyons TJ, Pielke RA Sr, Hacker JM (2011) The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J Geophys Res 116(D7):D07, 103. doi: 10.1029/2010JD014950 Google Scholar
  61. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and mediterranean regions. Clim Dyn 41:2451–2470. doi: 10.1007/s00382-012-1615-6 CrossRefGoogle Scholar
  62. Pitts RO, Lyons TJ (1989) Airflow over a two-dimensional escarpment. I: observations. Q J R Meteorol Soc 115:965–981. doi: 10.1002/qj.49711548810 CrossRefGoogle Scholar
  63. Pitts RO, Lyons TJ (1990) Airflow over a two-dimensional escarpment. II: hydrostatic flow. Q J R Meteorol Soc 116(492):363–378. doi: 10.1002/qj.49711649207 CrossRefGoogle Scholar
  64. Pleim JE (2006) A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45:341–347CrossRefGoogle Scholar
  65. Pleim JE (2007a) A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing. J Appl Meteorol Climatol 46:1383–1395CrossRefGoogle Scholar
  66. Pleim JE (2007b) A combined local and nonlocal closure model for the atmospheric boundary layer. part II: application and evaluation in a mesoscale meteorological model. J Appl Meteorol Climatol 46:1396–1409CrossRefGoogle Scholar
  67. Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over equatorial East Africa. Clim Dyn 37:1357–1379. doi: 10.1007/s00382-011-1024-2 CrossRefGoogle Scholar
  68. Pook MJ, Risbey JS, McIntosh PC (2011) The synoptic climatology of cool-season rainfall in the central wheatbelt of Western Australia. Mon Weather Rev 140:28–43. doi: 10.1175/MWR-D-11-00048.1 CrossRefGoogle Scholar
  69. Prabha TV, Hoogenboom G, Smirnova TG (2011) Role of land surface parameterizations on modeling cold-pooling events and low-level jets. Atmos Res 99:147–161. doi: 10.1016/j.atmosres.2010.09.017 CrossRefGoogle Scholar
  70. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2008) Australian water availability project. CSIRO marine and atmospheric research, Canberra, Australia. http://www.csiro.au/awap. Accessed 22 Oct 2009
  71. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2009), Australian water availability project (AWAP): CSIRO marine and atmospheric research component: final report for phase 3. CAWCR technical, report no. 013Google Scholar
  72. Reason CJC, Gamble D, Pearce AF (1999) The leeuwin current in the parallel ocean climate model and applications to regional meteorology and fisheries. Meteorol Appl 6:211–225. doi: 10.1017/S1350482799001255 CrossRefGoogle Scholar
  73. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948CrossRefGoogle Scholar
  74. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  75. Salathe E, Leung L, Qian Y, Zhang Y (2010) Regional climate model projections for the state of washington. Clim Change 102:51–75. doi: 10.1007/s10584-010-9849-y CrossRefGoogle Scholar
  76. Schneider DP, Deser C, Fasullo J, Trenberth KE (2013) Climate data guide spurs discovery and understanding. Eos Trans Am Geophys Union 94:121–122. doi: 10.1002/2013EO130001 CrossRefGoogle Scholar
  77. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475+STR., NCARGoogle Scholar
  78. Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the maps land-surface scheme. J Geophys Res Atmos 105(D3):4077–4086. doi: 10.1029/1999JD901047 CrossRefGoogle Scholar
  79. Stéfanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2013) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Clim Dyn 1–16. doi: 10.1007/s00382-013-1794-9
  80. Tapp RG, Barrell SL (1984) The north-west Australian cloud band: climatology, characteristics and factors associated with development. J Climatol 4:411–424. doi: 10.1002/joc.3370040406 CrossRefGoogle Scholar
  81. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  82. Yuan X, Liang XZ, Wood E (2012) WRF ensemble downscaling seasonal forecasts of china winter precipitation during 1982–2008. Clim Dyn 39:2041–2058. doi: 10.1007/s00382-011-1241-8 CrossRefGoogle Scholar
  83. Zhang Y, Dulière V, Mote PW, Salathé EP (2009) Evaluation of WRF and hadrm mesoscale climate simulations over the US pacific northwest. J Clim 22:5511–5526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jatin Kala
    • 1
  • Julia Andrys
    • 2
  • Tom J. Lyons
    • 2
  • Ian J. Foster
    • 3
  • Bradley J. Evans
    • 4
  1. 1.Australian Research Council Centre of Excellence for Climate Systems Science and Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.State Centre of Excellence for Climate Change Woodland and Forest HealthMurdoch UniversityMurdochAustralia
  3. 3.Western Australian Department of Agriculture and FoodBentleyAustralia
  4. 4.Department of Biological SciencesMacquarie UniversityMacquarie ParkAustralia

Personalised recommendations