Climate Dynamics

, Volume 44, Issue 1–2, pp 191–202 | Cite as

The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM

  • Wataru Sasaki
  • Takeshi Doi
  • Kelvin J. Richards
  • Yukio Masumoto


The link between El Niño/Southern Oscillation (ENSO) and the equatorial Atlantic precipitation during boreal spring (March–April–May) is explored using a coupled general circulation model (CGCM). Interannual variability of the equatorial Atlantic sea surface temperature (SST) in the CGCM is excluded by nudging the modeled SST toward the climatological monthly mean of observed SST in the equatorial Atlantic, but full air–sea coupling is allowed elsewhere. It is found that the equatorial Atlantic precipitation is reduced (increased) during El Niño (La Niña) in the case where the interannual variability of the equatorial Atlantic SST is disabled. The precipitation anomalies in the equatorial Atlantic during ENSO are not strongly associated with the meridional migration of the Atlantic inter-tropical convergence zone. We find the reduced precipitation in the equatorial Atlantic during El Niño is associated with an enhanced Atlantic Walker circulation characterized by strengthened low-level easterlies and anomalous dry, downward winds over the equatorial Atlantic, while the Pacific Walker circulation is weakened. The upper-level anomalous westerlies over the equatorial Atlantic are consistent with a Matsuno–Gill-type response to heating in the eastern equatorial Pacific. Our results of the CGCM experiments suggest that changes to the Walker circulation induced by ENSO contribute significantly to changes in precipitation over the equatorial Atlantic.


ITCZ ENSO Equatorial Atlantic Coupled general circulation model 



All model experiments were performed on the Earth Simulator 2. We would like to thank two anonymous reviewers and the editor whose comments have led to a much improved manuscript.


  1. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5, part I: model description, Max-Planck-Institut für Meteorologie Report 349Google Scholar
  2. Bates SC (2008) Coupled ocean–atmosphere interaction and variability in the tropical Atlantic Ocean with and without an annual cycle. J Clim 21(21):5501–5523CrossRefGoogle Scholar
  3. Biasutti M, Sobel AH, Kushnir Y (2006) AGCM precipitation biases in the tropical Atlantic. J Clim 19:935–958CrossRefGoogle Scholar
  4. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  5. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from the thermodynamic air–sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  6. Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res 107(D1). doi: 10.1029/2000JD000307 CrossRefGoogle Scholar
  7. Ding H, Keenlyside NS, Latif M (2012) Impact of the Equatorial Atlantic on the El Niño southern oscillation. Clim Dyn 38(9–10):1965–1972. doi: 10.1007/s00382-011-1097-y Google Scholar
  8. Doi T, Vecchi GA, Rosati AJ, Delworth TL (2012) Biases in the Atlantic ITCZ in seasonal-interannual variations for a coarse and a high resolution coupled climate model. J Clim 25:5494–5511CrossRefGoogle Scholar
  9. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945CrossRefGoogle Scholar
  10. Giannini A, Saravanan R, Chang P (2004) The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855CrossRefGoogle Scholar
  11. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  12. Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6(2):112–116. doi: 10.1038/ngeo1686 Google Scholar
  13. Huang B (2004) Remotely forced variability in the tropical Atlantic Ocean. Clim Dyn 23:133–152CrossRefGoogle Scholar
  14. Huang B, Shukla J (2005) Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J Clim 18:1652–1672CrossRefGoogle Scholar
  15. Huang B, Schopf P, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29(21). doi: 10.1029/2002GL014872
  16. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record; GPCP version 2.1. Geophys Res Lett 36:L17808CrossRefGoogle Scholar
  17. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  18. Levitus S (1982) Climatological Atlas of the World Ocean. NOAA Professional Paper, 13Google Scholar
  19. Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  20. Madec G (2008) “NEMO ocean engine”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619Google Scholar
  21. Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707CrossRefGoogle Scholar
  22. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43Google Scholar
  23. Münnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32:L21709CrossRefGoogle Scholar
  24. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  25. Okumura Y, Xie SP (2006) Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J Clim 19(22):5859–5874CrossRefGoogle Scholar
  26. Pezzi LP, Cavalcanti IFA (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal prediction over South America: a numerical study. Clim Dyn 17:205–212CrossRefGoogle Scholar
  27. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  28. Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598CrossRefGoogle Scholar
  29. Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42(1–2):171–188CrossRefGoogle Scholar
  30. Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048
  31. Rodrigues RR, Haarsma RJ, Campos EJD, Ambrizzi T (2011) The impacts of inter-El Niño variability on the tropical Atlantic and northeast Brazil climate. J Clim 24:3402–3422CrossRefGoogle Scholar
  32. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern Oscillation. J Clim 13:2177–2194CrossRefGoogle Scholar
  33. Sasaki W, Richards KJ, Luo JJ (2012) Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Model 57–58:29–42CrossRefGoogle Scholar
  34. Sasaki W, Richards KJ, Luo JJ (2013) Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM. Clim Dyn 41:443–453CrossRefGoogle Scholar
  35. Sasaki W, Doi T, Richards KJ, Masumoto Y (2014) Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Clim Dyn. doi: 10.1007/s00382-014-2072-1
  36. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  37. Valcke S, Caubel A, Vogelsang R, Declat D (2004) OASIS3 ocean atmosphere sea ice soil user’s guide. Technical report TR/CMGC/04/68 CERFACS Toulouse FranceGoogle Scholar
  38. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340CrossRefGoogle Scholar
  39. Wang C (2006) An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys Res Lett 33(12):L12702. doi: 10.1029/2006GL026324
  40. Xie SP (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70CrossRefGoogle Scholar
  41. Xie SP, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wataru Sasaki
    • 1
  • Takeshi Doi
    • 2
  • Kelvin J. Richards
    • 3
  • Yukio Masumoto
    • 2
    • 4
  1. 1.Center for Earth Information Science and TechnologyJapan Agency for Marine Earth Science and TechnologyYokohamaJapan
  2. 2.Application LaboratoryJapan Agency for Marine Earth Science and TechnologyYokohamaJapan
  3. 3.International Pacific Research Center/SOESTUniversity of Hawaii at ManoaHonoluluUSA
  4. 4.Department of Earth and Planetary ScienceThe University of TokyoTokyoJapan

Personalised recommendations