Climate Dynamics

, Volume 44, Issue 3–4, pp 1073–1091 | Cite as

Interdecadal change of interannual variability and predictability of two types of ENSO

  • Hye-In Jeong
  • Joong-Bae Ahn
  • June-Yi Lee
  • Andrea Alessandri
  • Harry H. Hendon
Article

Abstract

A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.

Keywords

El Niño and Southern Oscillation (ENSO) Climate regime shift Decadal variability Seasonal predictability and prediction Multi-model ensemble (MME) Teleconnection 

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Alessandri A, Borrelli A, Masina S, Carril AF, Di Pietro P, Carril AF, Cherchi A, Gualdi S, Navarra A (2010) The INGV-CMCC seasonal prediction system: improved Ocean initial conditions. Mon Weather Rev 138(7):2930–2952CrossRefGoogle Scholar
  3. Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011) Evaluation of probabilistic quality and value of the ENSEMBLES multi-model seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139(2):581–607CrossRefGoogle Scholar
  4. An SI (2004) Interdecadal changes in the El Niño-La Nina asymmetry. Geophy Res Lett 31:L23210Google Scholar
  5. An SI, Wang B (2000) Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  6. Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and IOD events on the Southern Hemisphere storm track activity during austral winter. J Clim 20:3147–3163CrossRefGoogle Scholar
  7. Ashok K, Tam CY, Lee WJ (2009) ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:L12705. doi:10.1029/2009GL038847 CrossRefGoogle Scholar
  8. Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ORA-S3 ocean analysis system. Mon Weather Rev 136(3):18–34Google Scholar
  9. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth symposium on integrated observing and assimilation systems for atmosphere, Oceans, and Land Surface. AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15 Google Scholar
  10. Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi:10.1029/2009GL037885 CrossRefGoogle Scholar
  11. Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266CrossRefGoogle Scholar
  12. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J, Halloran P (2008) Evaluation of the HadGEM2 model. Hadley Centre Technical Note HCTN 74, Met Office Hadley Centre, Exeter, UK. http://www.metoffice.gov.uk/learning/library/publications/science/climate-science
  13. Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094CrossRefGoogle Scholar
  14. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862CrossRefGoogle Scholar
  15. Graham NE (1992) Decadal scale climate variability in the 1970s and 1980s: observations and model results: decadal-to-century time scales of climate variability. Academic, New YorkGoogle Scholar
  16. Graham NE (1994) Decadal scale variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results. Clim Dyn 10:135–162CrossRefGoogle Scholar
  17. Gu D, Philander S (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807CrossRefGoogle Scholar
  18. Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exch 17:29–32Google Scholar
  19. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145CrossRefGoogle Scholar
  20. Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713. doi:10.1029/2009GL040100 CrossRefGoogle Scholar
  21. Hollowed AB, Hare SR, Wooster WS (2001) Pacific basin climate variability and patterns of northeast Pacific marine fish production. Prog Oceanogr 49:257–282CrossRefGoogle Scholar
  22. Jeong HI, Lee DY, Ashkok K, Ahn JB, Lee JY, Luo JJ, Schemm JK, Hendon HH, Braganza K, Ham YG (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn 39:475–493CrossRefGoogle Scholar
  23. Jia XJ, Lin H, Lee JY, Wang B (2012) Season-dependent forecast skill of the leading forced atmospheric circulation pattern over the North Pacific and North American Region. J Clim 25:7248–7265CrossRefGoogle Scholar
  24. Jia XJ, Lee JY, Lin H (2014) Interdecadal change in the Northern Hemisphere seasonal climate prediction: Part I. The leading forced mode of atmospheric circulation. Clim Dyn. doi:10.1007/s00382-013-1988-1
  25. Jin EK, Kinter JL III, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled O-A models. Clim Dyn 31:647–664. doi:10.1007/s00382-008-0397-3 CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  27. Kang H, Park CK, Saji NH, Ashko K (2009) Statistical downscaling of precipitation in Korea using multimodel output variables as predictors. Mon Weather Rev 137:1928–1938CrossRefGoogle Scholar
  28. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  29. Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing el niño southern oscillation forecasts using sea surface temperature. Tellus A 57:340–356CrossRefGoogle Scholar
  30. Kim ST, Yu JY (2012) The two types of ENSO in CMIP5 models. Geophy Res Lett 39:L11704. doi:10.1029/2012GL052006 Google Scholar
  31. Kim JS, Kim KY, Yeh SW (2012) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res 117:C06014. doi:10.1029/2012JC008003 Google Scholar
  32. Kodera K (2010) Change in the ENSO teleconnection characteristics in the boreal winter. SOLA 6A:21–24CrossRefGoogle Scholar
  33. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  34. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860 CrossRefGoogle Scholar
  35. Lee T, McPhaden MJ (2010) Increasing intensity of El Nin˜o in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007 Google Scholar
  36. Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0 CrossRefGoogle Scholar
  37. Lee DY, Tam CY, Park CK (2008) Effects of multicumulus convective ensemble on East Asian summer monsoon rainfall simulation. J Geophys Res 113:D24111. doi:10.1029/2008JD009847 CrossRefGoogle Scholar
  38. Lee JY, Wang B, Kang IS, Shukla J, Kumar A, Kug JS, Schemm JKE, Juo JJ, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park CK (2010) How are seasonal prediction skills related to models performance on mean state and annual cycle? Clim Dyn 35:267–283CrossRefGoogle Scholar
  39. Lee DY, Ashok K, Ahn JB (2011a) Toward enhancement of prediction skills of multimodel ensemble seasonal prediction: a climate filter concept. J Geophys Res 116:D06116. doi:10.1029/2010JD014610 Google Scholar
  40. Lee JY, Wang B, Ding Q, Ha KJ, Ahn JB, Kumar A, Stern B, Alves O (2011b) How predictable is the NH summer upper-tropospheric circulation? Clim Dyn 37:1189–1203CrossRefGoogle Scholar
  41. Lee SS, Lee JY, Ha KJ, Wang B, Schemm JK (2011c) Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Clim Dyn 36:1173–1188CrossRefGoogle Scholar
  42. Lee JY, Lee SS, Wang B, Ha KJ, Jhun JG (2013) Seasonal prediction and predictability of the Asian winter temperature variability. Clim Dyn 41:573–587CrossRefGoogle Scholar
  43. Lee JY, Wang B, Seo KH, Kug JS, Choi YS, Kosaka Y, Ha KJ (2014) Future change of Northern Hemisphere summer tropical-extratropical teleconnection in CMIP5 models. J Clim. doi:10.1175/JCLI-D-13-00261.1
  44. Lim EP, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter–El Niño variations of tropical SST and Australian spring rainfall. Mon Weather Rev 137:3796–3810CrossRefGoogle Scholar
  45. Lim EP, Hendon HH, Langford S, Alves O (2012) Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051. http://www.cawcr.gov.au/publications/technicalreports.php
  46. Maslanik JA, Serreze MC, Barry RG (1996) Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys Res Lett 23:1677–1680CrossRefGoogle Scholar
  47. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275 Google Scholar
  48. Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn 67:375–383Google Scholar
  49. Overland JE, Wang M (2005) The Arctic climate paradox: tHE recent decrease of the Arctic Oscillation. Geophys Res Lett 32:L06701. doi:10.1029/2004GL021752 Google Scholar
  50. Peng P, Kumar A, Van den Dool HM, Barnston AG (2002) An analysis of multimodel ensemble predictions for seasonal climate anomalies. J Geophys Res 107(D23):4710. doi:10.1029/2002JD002712 CrossRefGoogle Scholar
  51. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  52. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284CrossRefGoogle Scholar
  53. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25:151–169CrossRefGoogle Scholar
  54. Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172CrossRefGoogle Scholar
  55. Shi L, Hendon H, Alves O, Luo JJ, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884CrossRefGoogle Scholar
  56. Shinoda T, Hendon HH, Alexander MA (2004) Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep-Sea Res 51:619–635CrossRefGoogle Scholar
  57. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  58. Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Nino in the 21st century? J Clim 25:2129–2145CrossRefGoogle Scholar
  59. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471CrossRefGoogle Scholar
  60. Tang Y, Deng Z, Zhou X, Chen Y (2008) Interdecadal variation of enso predictability in multiple models. J Clim 21:4811–4833CrossRefGoogle Scholar
  61. Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22:3167–3174. doi:10.1175/2008JCLI2589.1 CrossRefGoogle Scholar
  62. Trenberth K, Hurrell J (1994) Decadal atmosphere-ocean variations in the pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  63. Wallace JM, Gutzler DS (1981) Teleconnections in the potential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812. doi:10.1175/1520-0493 CrossRefGoogle Scholar
  64. Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, Storch H (1998) The structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103(14):241–259Google Scholar
  65. Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. J Clim 9:480–486CrossRefGoogle Scholar
  66. Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Niño variations. J Clim 20:4211–4226CrossRefGoogle Scholar
  67. Wang B, Wang Y (1996) Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598CrossRefGoogle Scholar
  68. Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumar A, Schemm J, Luo JJ, Yamagata T, Park CK (2008a) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30:605–619CrossRefGoogle Scholar
  69. Wang B, Yang J, Zhou T (2008b) Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789CrossRefGoogle Scholar
  70. Wang B, Lee JY, Kang IS, Shukla J, Park CK, Kumar A, Schemm J, Cocke S, Kug JS, Luo JJ, Zhou T, Wang B, Fu X, Yun WT, Alves O, Jin EK, Kinter J, Kirtman B, Krishnamurti T, Lau NC, Lau W, Liu P, Pegion P, Rosati T, Schubert S, Stern W, Suarez M, Yamagata T (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117CrossRefGoogle Scholar
  71. Watanabe M, Nitta T (1999) Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J Clim 12:494–510CrossRefGoogle Scholar
  72. Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) Ensembles: a new multi-model ensemble for seasonal-to-annual predictions-skill and progress beyond Demeter in forecasting tropical Pacific SSTs. Geo Res Lett 36:L21711CrossRefGoogle Scholar
  73. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  74. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  75. Wu A, Hsieh W (2003) Nonlinear interdecadal changes of the el niño-southern oscillation. Clim Dyn 21:719–730CrossRefGoogle Scholar
  76. Yasunaka S, Hanawa K (2003) Regime shifts in the Northern Hemisphere SST field: revisited in relation to tropical variations. J Meteorol Soc Jpn 81:415–424CrossRefGoogle Scholar
  77. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  78. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011a) Natural variability of the central Pacific El Niño event on multicentennial timescales. Geophys Res Lett 38:L02704. doi:10.1029/2010GL045886 Google Scholar
  79. Yeh SW, Kang Y, Noh Y, Miller A (2011b) The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J Clim 24:1170–1183CrossRefGoogle Scholar
  80. Yu JY, Kao HK (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi:10.1029/2006JD007654 Google Scholar
  81. Yu JY, Lu MM, Kim ST (2012a) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7. doi:10.1088/1748-9326/7/3/034025
  82. Yu JY, Zou Y, Kim ST, Lee T (2012b) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hye-In Jeong
    • 1
    • 2
  • Joong-Bae Ahn
    • 2
  • June-Yi Lee
    • 3
  • Andrea Alessandri
    • 4
    • 5
  • Harry H. Hendon
    • 6
  1. 1.APEC Climate Center (APCC)PusanRepublic of Korea
  2. 2.Pusan National UniversityPusanRepublic of Korea
  3. 3.Institute of Environmental StudiesPusan National UniversityPusanRepublic of Korea
  4. 4.Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibileRomeItaly
  5. 5.University of Hawaii/International Pacific Research CenterHonoluluUSA
  6. 6.Centre for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia

Personalised recommendations