Climate Dynamics

, Volume 43, Issue 12, pp 3351–3366 | Cite as

Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

  • Xidong Wang
  • Chunzai Wang
  • Guijun Han
  • Wei Li
  • Xinrong Wu


In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000–2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.


South China Sea circulation Tropical cyclone Heat transport Air-sea interaction 



This study is supported by the National Basic Research Program of China (2013CB430304 and 2013CB430301), National Natural Science Foundation (41030854, 41106005, 41176003, 41206178 and 41376015) of China, and National High-Tech R&D Program (2013AA09A505) of China. Xidong Wang is supported by China Scholarship Council.


  1. Cardona Y, Bracco A (2012) Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea. Ocean Model 42:1–15CrossRefGoogle Scholar
  2. Chu PC, Lu S, Chen Y (1997) Temporal and spatial variabilities of the South China Sea surface temperature anomaly. J Geophys Res 102:20937–20955CrossRefGoogle Scholar
  3. Chu PC, Fan CW, Lozano CJ, Kerling JL (1998) An airborne expendable bathythermograph survey of the South China Sea, May 1995. J Geophys Res 103:21637–21652CrossRefGoogle Scholar
  4. Danioux E, Klein P, Priviere P (2008) Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J Phys Oceanogr 38:2224–2241. doi: 10.1175/2008JPO3821.1 CrossRefGoogle Scholar
  5. Dare RA, Mcbride JL (2011) Sea surface temperature response to tropical cyclones. Mon Weather Rev 139:3798–3808. doi: 10.1175/MWR-D-10-05019.1 CrossRefGoogle Scholar
  6. Ducet N, Le Traon P-Y, Reverdin G (2000) Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19477–19498CrossRefGoogle Scholar
  7. Elipot S, Lumpkin R, Prieto G (2010) Modifications of inertial oscillations by the mesoscale eddy field. J Geophys Res. doi: 10.1029/2009JC05679 Google Scholar
  8. Emanuel KA (2001) Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res 106:14771–14781CrossRefGoogle Scholar
  9. Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688CrossRefGoogle Scholar
  10. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization on air–sea fluxes: Updates and verification for the COARE algorithm. J Clim 16:571–591CrossRefGoogle Scholar
  11. Fedorov AV, Brierley CM, Emanuel KA (2010) Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463:1066–1070CrossRefGoogle Scholar
  12. Furuichi N, Hibiya T, Niwa Y (2008) Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J Geophys Res 113(C9):2156–2202Google Scholar
  13. Ginis I (2002) Tropical cyclone-ocean interactions, chapter 3, in atmosphere-ocean interactions. In: Perrie W (ed) WIT Press Advances in fluid mechanics series 33: 83–114Google Scholar
  14. Gordon AL (2005) Oceanography of Indonesian seas and their throughflow. Oceanography 18:14–27CrossRefGoogle Scholar
  15. Gordon AL, Susanto RD, Vranes K (2003) Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425:824–828CrossRefGoogle Scholar
  16. Han GJ, Li W, Zhang XF, Li D, He ZJ, Wang XD, Wu XR, Yu T, Ma JR (2011) A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv Atmos Sci 28(3):682–690CrossRefGoogle Scholar
  17. Hart RE, Maue RN, Watson MC (2007) Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon Weather Rev 135:3990–4005CrossRefGoogle Scholar
  18. Hu A, Meehl GA (2009) Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys Res Lett. doi: 10.1029/2008GL036680 Google Scholar
  19. Jansen MF, Ferrari R (2009) Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett. doi: 10.1029/2008GL036796 Google Scholar
  20. Jansen MF, Ferrari R, Mooring TA (2010) Seasonal versus permanent thermocline warming by tropical cyclones. Geophys Res Lett. doi: 10.1029/2009GL041808 Google Scholar
  21. Jourdain NC, Lengaigne M, Vialard J, Madec G, Menkes CE, Vincent EM, Samson G, Jullien S, Barnier B (2013) Observation-based estimates of ocean mixing inhibition by heavy rainfall under tropical cyclones. J Phys Oceanogr 43:205–221CrossRefGoogle Scholar
  22. Jullien S, Menkes CE, Marchesiello P, Jourdain NC, Lengaigne M, Koch-Larrouy A, Lefèvre J, Vincent EM, Faure V (2012) Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J Phys Oceanogr 42:1882–1905CrossRefGoogle Scholar
  23. Korty RL, Emanuel KA, Scott JR (2008) Tropical cyclone induced mixing and climate: application to equable climates. J Clim 21:638–654CrossRefGoogle Scholar
  24. Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett. doi: 10.1029/2006GL028836 Google Scholar
  25. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  26. Lau KM, Wu HT, Yang S (1998) Hydrologic processes associated with the firs transition of the Asian summer monsoon: a pilot satellite study. Bull Am Meteorol Soc 79(9):1871–1882CrossRefGoogle Scholar
  27. Leipper DF (1967) Observed ocean conditions and Hurricane Hilda, 1964. J Atmos Sci 24:182–196CrossRefGoogle Scholar
  28. Li L, Qu T (2006) Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res. doi: 10.1029/2005JC003164 Google Scholar
  29. Li W, Xie YF, He ZJ, Liu KX, Han GJ, Ma JR, Li D (2008) Application of the multi-grid data assimilation scheme to the China Seas’ temperature forecast. J Atmos Oceanic Technol 25(11):2106–2116CrossRefGoogle Scholar
  30. Li W, Xie YF, Deng SM, Wang Q (2010) Application of the multigrid method to the two-dimensional doppler radar radial velocity data assimilation. J Atmos Oceanic Technol 27(2):319–332CrossRefGoogle Scholar
  31. Lin I-I, Liu WT, Wu C-C, Wong GTF, Hu C, Chen Z, Liang W-D, Yang Y, Liu K-K (2003) New evidence for enhanced primary production triggered by tropical cyclone. J Geophys Res. doi: 10.1029/2003GL017141 Google Scholar
  32. Liu LL, Wang W, Huang RX (2008) The mechanical energy input to the ocean induced by tropical cyclones. J Phys Oceanogr 38:1253–1266CrossRefGoogle Scholar
  33. Mao JY, Chan JCL (2005) Intraseasonal variability of the South China Sea summer monsoon. J Clim 18(13):2388–2402CrossRefGoogle Scholar
  34. Mellor GL, Hakkinen S, Ezer T, Patchen R (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinard N, Woods J (eds) Ocean forecasting: conceptual basis and applications. Springer, Berlin, pp 55–72CrossRefGoogle Scholar
  35. Morozov EG, Velarde MG (2008) Inertial oscillations as deep ocean response to hurricanes. J Oceanogr 64(4):495–509. doi: 10.1007/s10872-008-0042-0 CrossRefGoogle Scholar
  36. Oey LY, Ezer T, Wang DP, Yin XQ, Fan SJ (2006) Loop current warming by Hurricane Wilma. Geophys Res Lett. doi: 10.1029/2006GL02587 Google Scholar
  37. Pasquero C, Emanuel K (2008) Tropical cyclones and transient upper-ocean warming. J Clim 21:149–162CrossRefGoogle Scholar
  38. Powell MD, Vichery PJ, Reinhold T (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283. doi: 10.1038/nature01481 CrossRefGoogle Scholar
  39. Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260CrossRefGoogle Scholar
  40. Price JF, Morzel J, Niiler PP (2008) Warming of SST in the cool wake of a moving hurricane. J Geophys Res. doi: 10.1029/2007JC004393 Google Scholar
  41. Qu T (2000) Upper-layer circulation in the South China Sea. J Phys Oceanogr 30:1450–1460CrossRefGoogle Scholar
  42. Qu T (2001) Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res 106:6943–6955CrossRefGoogle Scholar
  43. Qu T, Du Y, Meyers G, Ishida A, Wang D (2005) Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett. doi: 10.1029/2005GL024698 Google Scholar
  44. Qu T, Du Y, Sasaki H (2006a) South China sea throughflow: a heat and freshwater conveyor. Geophys Res Lett. doi: 10.1029/2006GL028350 Google Scholar
  45. Qu T, Girton JB, Whitehead JA (2006b) Deepwater overflow through Luzon Strait. J Geophys Res. doi: 10.1029/2005JC003139 Google Scholar
  46. Qu T, Du Y, Gan J, Wang D (2007) Mean seasonal cycle of isothermal depth in the South China Sea. J Geophys Res. doi: 10.1029/2006JC003583 Google Scholar
  47. Rao AD, Madhu J, Jain I, Ravichandran M (2010) Response of subsurface waters in the eastern Arabian Sea to tropical cyclones. Estuar Coast Shelf Sci 89:267–276CrossRefGoogle Scholar
  48. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  49. Roxy M, Tanimoto Y (2012) Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Clim Dyn 39(5):1209–1218. doi: 10.1007/s00382-011-1118-x CrossRefGoogle Scholar
  50. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24(16):4368–4384. doi: 10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  51. Shang S-L, Li L, Sun F, Wu J, Hu C, Chen D, Ning X, Qiu Y, Zhang C, Shang S (2008) Changes of temperature and bio-optical properties in the South China Sea in response to typhoon Lingling, 2001. Geophys Res Lett. doi: 10.1029/2008GL033502 Google Scholar
  52. Sriver RL, Huber M (2007) Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 447:577–580. doi: 10.1038/nature05785 CrossRefGoogle Scholar
  53. Sriver RL, Huber M, Nusbaumer J (2008) Investigating tropical cyclone-climate feedbacks using the TRMM Microwave Imager and the Quick Scatterometer. Geochem Geophys Geosyst. doi: 10.1029/2007GC001842 Google Scholar
  54. Sriver RL, Goes M, Mann ME, Keller K (2010) Climate response to tropical cyclone-induced ocean mixing in an Earth system model of intermediate complexity. J Geophys Res. doi: 10.1029/2010JC006106 Google Scholar
  55. Tian J, Qu T (2012) Advances in research on the deep South China Sea circulation. Chin Sci Bull 57(24):3115–3120CrossRefGoogle Scholar
  56. Tozuka T, Qu T, Yamagata T (2007) Effect of South China Sea through flow on the Makassar strait throughflow. Geophys Res Lett. doi: 10.1029/2007GL030420 Google Scholar
  57. Troccoli A, Balmaseda MA, Segschneider J, Vialard J, Anderson DLT, Haines K, Stockdale T, Vitart F, Fox AD (2002) Salinity adjustments in the presence of temperature data assimilation. Mon Weather Rev 130:89–102CrossRefGoogle Scholar
  58. Vincent EM, Madec G, Lengaigne M, Koch-Larrouy A, Vialard J (2012) Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport. Clim Dyn. doi: 10.1007/s00382-012-1556-0 Google Scholar
  59. Wang W, Wang C (2006) Formation and decay of the spring warm pool in the South China Sea. Geophys Res Lett. doi: 10.1029/2005GL025097 Google Scholar
  60. Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett. doi: 10.1029/2003GL018532 Google Scholar
  61. Wang C, Wang W, Wang D, Wang Q (2006a) Interannual variability of the South China Sea associated with El Niño. J Geophys Res. doi: 10.1029/2005JC003333 Google Scholar
  62. Wang D, Liu Q, Huang R, Du Y, Qu T (2006b) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett. doi: 10.1029/2006GL026316 Google Scholar
  63. Wang G, Su J, Ding Y, Chen D (2007) Tropical cyclones genesis over the South China Sea. J Mar Syst 68(3–4):318–326CrossRefGoogle Scholar
  64. Wang G, Ling Z, Wang C (2009) Influence of tropical cyclones on seasonal ocean circulation in the South China Sea. J Geophys Res. doi: 10.1029/2009JC005302 Google Scholar
  65. Wang G, Xie S-P, Qu T, Huang R-X (2011) Deep South China Sea circulation. Geophys Res Lett. doi: 10.1029/2010GL046626 Google Scholar
  66. Wang J-W, Han W, Sriver RL (2012) Impact of tropical cyclones on the ocean heat budget in the Bay of Bengal during 1999. Model configuration and evaluation. J Geophys Res, Part I. doi: 10.1029/2012JC008372 Google Scholar
  67. Wu R (2010) Subseasonal variability during the South China Sea summer monsoon onset. Clim Dyn 34(5):629–642. doi: 10.1007/s00382-009-0679-4 CrossRefGoogle Scholar
  68. Wu C-R, Shaw P-T, Chao S-Y (1998) Seasonal and interannual variations in the velocity field of the South China Sea. J Oceanogr 54:361–372CrossRefGoogle Scholar
  69. Wyrtki K (1961) Physical oceanography of the southeast Asian waters. Naga Rep 2 Scripps Inst. of Oceanogr. La Jolla, Calif, pp 195Google Scholar
  70. Zhai X, Greatbach R, Zhao J (2005) Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys Res Lett. doi: 10.1029/2005GL023643 Google Scholar
  71. Zheng Q, Lai RJ, Huang NE, Pan J, Liu WT (2006) Observation of ocean current response to 1998 Hurricane Georges at Gulf of Mexico. Acta Oceanologica Sinica 25:1–14Google Scholar
  72. Zhu J, Yan CX (2006) Nonlinear balance constraints in 3DVAR data assimilation. Sci China 49:331–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xidong Wang
    • 1
    • 2
    • 3
  • Chunzai Wang
    • 2
  • Guijun Han
    • 3
  • Wei Li
    • 3
  • Xinrong Wu
    • 3
  1. 1.Cooperative Institute for Marine and Atmospheric StudiesUniversity of MiamiMiamiUSA
  2. 2.NOAA/Atlantic Oceanographic and Meteorological LaboratoryMiamiUSA
  3. 3.Key Laboratory of Marine Environmental Information Technology, SOANational Marine Data and Information ServiceTianjinChina

Personalised recommendations