Climate Dynamics

, Volume 42, Issue 7–8, pp 1699–1713 | Cite as

Time-scale and state dependence of the carbon-cycle feedback to climate

  • Matteo WilleitEmail author
  • Andrey Ganopolski
  • Daniela Dalmonech
  • Aideen M. Foley
  • Georg Feulner


Climate and atmospheric CO2 concentration are intimately coupled in the Earth system: CO2 influences climate through the greenhouse effect, but climate also affects CO2 through its impact on the amount of carbon stored on land and in the ocean. The change in atmospheric CO2 as a response to a change in temperature (\(\varDelta CO_{2}/\varDelta T\)) is a useful measure to quantify the feedback between the carbon cycle and climate. Using an ensemble of experiments with an Earth system model of intermediate complexity we show a pronounced time-scale dependence of \(\varDelta CO_{2}/\varDelta T\). A maximum is found on centennial scales with \(\varDelta CO_{2}/\varDelta T\) values for the model ensemble in the range 5–12 ppm °C−1, while lower values are found on shorter and longer time scales. These results are consistent with estimates derived from past observations. Up to centennial scales, the land carbon response to climate dominates the CO2 signal in the atmosphere, while on longer time scales the ocean becomes important and eventually dominates on multi-millennial scales. In addition to the time-scale dependence, modeled \(\varDelta CO_{2}/\varDelta T\) show a distinct dependence on the initial state of the system. In particular, on centennial time-scales, high \(\varDelta CO_{2}/\varDelta T\) values are correlated with high initial land carbon content. A similar relation holds also for the CMIP5 models, although for \(\varDelta CO_{2}/\varDelta T\) computed from a very different experimental setup. The emergence of common patterns like this could prove to usefully constrain the climate–carbon cycle feedback.


Carbon–climate interaction Feedbacks Time-scale dependence Initial state dependence Carbon cycle 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement n 238366.

M.W. is grateful to Victor Brovkin for help with implementing the new land carbon cycle parameterisations in CLIMBER-2, to Werner von Bloh for the introduction to CLIMBER-LPJ and to Wolfgang Lucht and Sibyll Schaphoff for useful discussions about the CLIMBER-LPJ results.


  1. Archer D (2005) Fate of fossil fuel CO\(_2\) in geologic time. J Geophys Res 110(C9):C09S05. doi: 10.1029/2004JC002625 Google Scholar
  2. Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim 26(15):5289–5314. doi: 10.1175/JCLI-D-12-00494.1 CrossRefGoogle Scholar
  3. Berthelot M, Friedlingstein P, Ciais P, Dufresne JL, Monfray P (2005) How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes. Glob Change Biol 11(6):959–970. doi: 10.1111/j.1365-2486.2005.00957.x CrossRefGoogle Scholar
  4. Boer GJ, Arora V (2009) Temperature and concentration feedbacks in the carbon cycle. Geophys Res Lett 36(2). doi: 10.1029/2008GL036220
  5. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3):679–706. doi: 10.1111/j.1365-2486.2006.01305.x CrossRefGoogle Scholar
  6. Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Model 101:251–261CrossRefGoogle Scholar
  7. Brovkin V, Bendtsen Jr, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16(4):86-1–86-20. doi: 10.1029/2001GB001662
  8. Brovkin V, Sitch S, von Bloh W, Claussen M, Bauer E, Cramer W (2004) Role of land cover changes for atmospheric CO\(_2\) increase and climate change during the last 150 years. Glob Change Biol 10(8):1253–1266. doi: 10.1111/j.1365-2486.2004.00812.x CrossRefGoogle Scholar
  9. Brovkin V, Ganopolski A, Archer D, Rahmstorf S (2007) Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22(4). doi: 10.1029/2006PA001380
  10. Cox P, Jones C (2008) Climate change. Illuminating the modern dance of climate and CO2. Science (New York, NY) 321(5896):1642–4. doi: 10.1126/science.1158907 CrossRefGoogle Scholar
  11. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  12. Dalmonech D, Zaehle S (2013) Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO\(_2\) and satellite-based vegetation activity observations. Biogeosciences 10(6):4189–4210. doi: 10.5194/bg-10-4189-2013 CrossRefGoogle Scholar
  13. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science (New York, NY) 290(5490):291–296CrossRefGoogle Scholar
  14. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World Soil Database (version 1.2).Google Scholar
  15. Foley A, Willeit M, Brovkin V, Feulner G, Friend A (2014) Quantifying the global carbon cycle response to volcanic stratospheric aerosol radiative forcing using Earth System Models. J Geophys Res Atmos 119:101–111. doi: 10.1002/2013JD019724 CrossRefGoogle Scholar
  16. Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(7280):527–30. doi: 10.1038/nature08769 CrossRefGoogle Scholar
  17. Friedlingstein P, Prentice I (2010) Carbon-climate feedbacks: a review of model and observation based estimates. Curr Opin Environ Sustain 2(4):251–257. doi: 10.1016/j.cosust.2010.06.002 CrossRefGoogle Scholar
  18. Friedlingstein P, Dufresne J, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55(2):692–700. doi: 10.1034/j.1600-0889.2003.01461.x CrossRefGoogle Scholar
  19. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353. doi: 10.1175/JCLI3800.1 CrossRefGoogle Scholar
  20. Ganopolski A, Roche DM (2009) On the nature of lead-lag relationships during glacial-interglacial climate transitions. Quat Sci Rev 28(27–28):3361–3378. doi: 10.1016/j.quascirev.2009.09.019 CrossRefGoogle Scholar
  21. Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391(6665):351–356CrossRefGoogle Scholar
  22. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17(10):735–751. doi: 10.1007/s003820000144 CrossRefGoogle Scholar
  23. Gibbs HK (2006) Olsons major world ecosystem complexes ranked by carbon in live vegetation: an updated database using the GLC2000 land cover product. Available at:
  24. Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon cycle feedbacks. J Clim 22(19):5232–5250. doi: 10.1175/2009JCLI2949.1 CrossRefGoogle Scholar
  25. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–92. doi: 10.1038/nature06591 CrossRefGoogle Scholar
  26. Holden PB, Edwards NR, Gerten D, Schaphoff S (2013) A model-based constraint on CO\(_2\) fertilisation. Biogeosciences 10(1):339–355. doi: 10.5194/bg-10-339-2013 CrossRefGoogle Scholar
  27. Horn JE, Schulz K (2011) Identification of a general light use efficiency model for gross primary production. Biogeosciences 8(4):999–1021. doi: 10.5194/bg-8-999-2011 CrossRefGoogle Scholar
  28. Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob Change Biol 17(10):3161–3175. doi: 10.1111/j.1365-2486.2011.02450.x CrossRefGoogle Scholar
  29. Jansen E, Overpeck J, Briffa K, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  30. Jouzel J (2003) Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J Geophys Res 108(D12):4361. doi: 10.1029/2002JD002677 CrossRefGoogle Scholar
  31. Keeling C, Whorf T, Wahlen M, Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670CrossRefGoogle Scholar
  32. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428(1):261–285. doi: 10.1051/0004-6361:20041335 CrossRefGoogle Scholar
  33. Lemoine DM (2010) Paleoclimatic warming increased carbon dioxide concentrations. J Geophys Res 115(D22):D22,122. doi: 10.1029/2010JD014725 CrossRefGoogle Scholar
  34. Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323CrossRefGoogle Scholar
  35. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–82. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  36. Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M, Gladstone RM, Hewitt CD, Kitoh A, LeGrande AN, Marti O, Merkel U, Motoi T, Ohgaito R, Otto-Bliesner B, Peltier WR, Ross I, Valdes PJ, Vettoretti G, Weber SL, Wolk F, Yu Y (2005) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim Dyn 26(5):513–529. doi: 10.1007/s00382-005-0081-9 CrossRefGoogle Scholar
  37. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  38. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science (New York, NY) 291(5501):112–4. doi: 10.1126/science.291.5501.112 CrossRefGoogle Scholar
  39. Müller C, Lucht W (2007) Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution. J Geophys Res 112(D6):D06,105. doi: 10.1029/2006JD007875 Google Scholar
  40. Pépin L, Raynaud D, Barnola JM, Loutre MF (2001) Hemispheric roles of climate forcings during glacial-interglacial transitions as deduced from the Vostok record and LLN-2D model experiments. J Geophys Res Atmos 106(D23):31,885–31,892. doi: 10.1029/2001JD900117 CrossRefGoogle Scholar
  41. Petit J, Jouzel J, Raynaud D, Barkov N (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. doi: 10.1038/20859 CrossRefGoogle Scholar
  42. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16(1):1–17. doi: 10.1007/PL00007919 CrossRefGoogle Scholar
  43. Pongratz J, Reick CH, Raddatz T, Claussen M (2009) Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob Biogeochem Cycles 23(4). doi. 10.1029/2009GB003488
  44. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 7(4):811–841. doi: 10.1029/93GB02725 CrossRefGoogle Scholar
  45. Prentice I, Farquhar G, Fasham M, Goulden M, Heimann M, Jaramillo W, Kheshgi H, Le Quéré C, Scholes R, Wallace D, Al E (2001) The carbon cycle and atmospheric carbon dioxide content. In: Houghton J, Ding Y, Al E (eds) Climate change 2001. The science basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  46. Rafelski LE, Piper SC, Keeling RF (2009) Climate effects on atmospheric carbon dioxide over the last century. Tellus B 61(5):718–731. doi: 10.1111/j.1600-0889.2009.00439.x CrossRefGoogle Scholar
  47. Schaphoff S, Heyder U, Ostberg S, Gerten D, Heinke J, Lucht W (2013) Contribution of permafrost soils to the global carbon budget. Environ Res Lett 8(1):014,026. doi: 10.1088/1748-9326/8/1/014026 CrossRefGoogle Scholar
  48. Scheffer M, Brovkin V, Cox PM (2006) Positive feedback between global warming and atmospheric CO\(_2\) concentration inferred from past climate change. Geophys Res Lett 33(10):2–5. doi: 10.1029/2005GL025044 CrossRefGoogle Scholar
  49. Schimel DS, Braswell BH, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8(3):279–293. doi: 10.1029/94GB00993 CrossRefGoogle Scholar
  50. Schneider von Deimling T, Ganopolski A, Held H, Rahmstorf S (2006) How cold was the Last Glacial Maximum? Geophys Res Lett 33(14):L14,709. doi: 10.1029/2006GL026484 CrossRefGoogle Scholar
  51. Shakun JD, Clark PU, He F, Sa Marcott, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392):49–54. doi: 10.1038/nature10915 CrossRefGoogle Scholar
  52. Shaver GR, Canadell J, Chapin SF III, Gurevitch J, Harte J, Henry G (2000) Global warming and terrestrial ecosystems : a conceptual framework for analysis. BioScience 50(10):871–882. doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
  53. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185. doi: 10.1046/j.1365-2486.2003.00569.x CrossRefGoogle Scholar
  54. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO\(_2\) and climate. Global Biogeochem Cycles 19(GB2013): doi: 10.1029/2004GB002311
  55. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14(9):2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x CrossRefGoogle Scholar
  56. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19(14):3354–3360. doi: 10.1175/JCLI3799.1 CrossRefGoogle Scholar
  57. Steinhilber F, Abreu Ja, Beer J, Brunner I, Christl M, Fischer H, Heikkilä U, Kubik PW, Mann M, McCracken KG, Miller H, Miyahara H, Oerter H, Wilhelms F (2012) 9,400 Years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci USA 109(16):5967–5971. doi: 10.1073/pnas.1118965109 CrossRefGoogle Scholar
  58. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  59. Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10(3):1717–1736. doi: 10.5194/bg-10-1717-2013 CrossRefGoogle Scholar
  60. Torn MS, Harte J (2006) Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophys Res Lett 33(10). doi: 10.1029/2005GL025540
  61. Willeit M, Ganopolski A, Feulner G (2014) Asymmetry and uncertainties in biogeophysical climate vegetation feedback over a range of CO2 forcings. Biogeosciences 11:17–32. doi: 10.5194/bg-11-17-2014 CrossRefGoogle Scholar
  62. Woodwell G, Mackenzie F, Houghton R, Apps M, Gorham E, Davidson E (1998) Biotic feedbacks in the warming of the earth. Clim Change 40:495–518. doi: 10.1023/A:1005345429236 CrossRefGoogle Scholar
  63. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science (New York, NY) 329(5994):940–943. doi: 10.1126/science.1192666 CrossRefGoogle Scholar
  64. Zickfeld K, Eby M, Matthews HD, Schmittner A, Weaver AJ (2011) Nonlinearity of carbon cycle feedbacks. J Clim 24(16):4255–4275. doi: 10.1175/2011JCLI3898.1 CrossRefGoogle Scholar
  65. Zielinski GA (1995) Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. J Geophys Res 100(D10):20,937. doi: 10.1029/95JD01751 CrossRefGoogle Scholar
  66. Zielinski GA, Mershon GR (1997) Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene-Holocene transition. Geol Soc Am Bull 109(5):547–559. doi: 10.1130/0016-7606(1997)109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matteo Willeit
    • 1
    Email author
  • Andrey Ganopolski
    • 1
  • Daniela Dalmonech
    • 2
  • Aideen M. Foley
    • 3
  • Georg Feulner
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Max-Planck Institute for BiogeochemistryJenaGermany
  3. 3.Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research (4CMR)University of CambridgeCambridgeUK

Personalised recommendations