Climate Dynamics

, Volume 43, Issue 12, pp 3245–3266 | Cite as

Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex

  • Hans-F. GrafEmail author
  • Davide Zanchettin
  • Claudia Timmreck
  • Matthias Bittner


A composite analysis of Northern Hemisphere’s mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.


Stratospheric polar vortex ENSO QBO Winter climate Teleconnections Reanalysis Volcanic eruptions 



This work benefits from stimulating visits that Hans-F. Graf spent at the Max Planck Institute for Meteorology. The authors would like to thank Elisa Manzini and two anonymous reviewers for helpful comments on an earlier version of this paper. This work was supported by the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A(DZ):/01LP1130A(CT,MB)).


  1. Ambaum MHP, Hoskins BJ (2002) The NAO troposphere stratosphere connection. J Clim 15:1969–1978CrossRefGoogle Scholar
  2. Ambrizzi T, Hoskins BJ (1997) Stationary Rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123(540):919–928. doi: 10.1002/qj.49712354007 CrossRefGoogle Scholar
  3. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefGoogle Scholar
  4. Baldwin MP, Cheng XH, Dunkerton TJ (1994) Observed relations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys Res Lett 21:1141–1144CrossRefGoogle Scholar
  5. Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J Clim 15:1893–1910. doi: 10.1175/15200442(2002)015<1893:CTTJSW>2.0.CO;2 CrossRefGoogle Scholar
  6. Brönnimann S (2007) Impact of El Niño-Southern Oscillation on European climate. Rev Geophys 45:3003. doi: 10.1029/2006RG000199 Google Scholar
  7. Butler AH, Polvani LM (2011) El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys Res Lett 38:L13807. doi: 10.1029/2011GL048084 Google Scholar
  8. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Clim 22:1223–1238CrossRefGoogle Scholar
  9. Camp CD, Tung K–K (2007) Stratospheric polar warming by ENSO in winter: a statistical study. Geophys Res Lett 34:L04809. doi: 10.1029/2006GL028521 Google Scholar
  10. Castanheira JM, Graf H-F (2003) North Pacific—North Atlantic relationships under stratospheric control? J Geophys Res 108(D1):4036. doi: 10.1029/2002JD002754 CrossRefGoogle Scholar
  11. Castanheira JM, Liberato MLR, de la Torre L, Graf H-F (2009) Baroclinic Rossby wave forcing and Barotropic Rossby wave response to stratospheric vortex variability. J Atmos Sci 66(4):902–914CrossRefGoogle Scholar
  12. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the. CMIP5 models. J Geophys Res Atmos 118(6):2494–2505CrossRefGoogle Scholar
  13. Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere– troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343CrossRefGoogle Scholar
  14. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G (2012) Coupled model intercomparison project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res 117:D17105. doi: 10.1029/2012JD017607 Google Scholar
  15. Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24(3):778–794CrossRefGoogle Scholar
  16. Garfinkel CI, Hartmann DL (2007) Effects of the El-Nino Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J Geophys Res Atmos 112:D19112. doi: 10.1029/2007JD008481 CrossRefGoogle Scholar
  17. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res Atmos 113. doi: 10.1029/2008JD009920
  18. Garfinkel CI, Hartmann DL (2010) Influence of the quasi-biennial oscillation on the North Pacific and El-Niño teleconnections. J Geophys Res 115:D20116. doi: 10.1029/2010JD014181 CrossRefGoogle Scholar
  19. Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2012) Are the teleconnections of Central Pacific and Eastern Pacific El Nino distinct in boreal wintertime? Clim Dyn. doi: 10.1007/s00382-012-1570-2 Google Scholar
  20. Garfinkel CI, Waugh DW, Gerber EP (2013) The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J Clim 26:2077–2095CrossRefGoogle Scholar
  21. Gerber EP, Polvani LM (2009) Stratosphere–troposphere coupling in a relatively simple AGCM: the importance of stratospheric variability. J Clim 22:1920–1933CrossRefGoogle Scholar
  22. Gerber Edwin P et al (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull Am Meteor Soc 93:845–859. doi: 10.1175/BAMS-D-11-00145.1 CrossRefGoogle Scholar
  23. Graf H-F and Zanchettin D (2012) Central Pacific El Nino, the subtropical bridge, and Eurasian climate. J Geophys Res 117. doi: 10.1029/2011JD016493
  24. Graf H-F, Kirchner I, Robock A, Schult I (1993) Pinatubo eruption winter climate effects: model versus observation. Clim Dyn 9:81–93Google Scholar
  25. Graf H-F, Perlwitz J, Kirchner I (1994) Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions. Contrib Atmos Phys 67:3–13Google Scholar
  26. Graf H-F, Li Q, Giorgetta MA (2007) Volcanic effects on climate: revisiting the mechanisms. Atmos Chem Phys 7:4503–4511CrossRefGoogle Scholar
  27. Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116(D20):D20121CrossRefGoogle Scholar
  28. Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperatures on the arctic winter climate. J Geophys Res Atmos 117:D19110. doi: 10.1029/2012JD017819 CrossRefGoogle Scholar
  29. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36CrossRefGoogle Scholar
  30. Jin FF, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319CrossRefGoogle Scholar
  31. Johnson N (2013) How many ENSO flavors can we distinguish? J Clim 26:4816–4827. doi: 10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  32. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  33. Kodera K (2010) Change in the ENSO teleconnection characteristics in the boreal winter. SOLA 6A:021–024. doi: 10.2151/sola.6A-006 CrossRefGoogle Scholar
  34. Kodera K, Chiba M, Koide H, Kitoh A, Nikaidou Y (1996) Interannual variability of the winter stratosphere and troposphere. J Meteor Soc Jpn 74:365–382Google Scholar
  35. Li J, Xie S-P, Cook ER, Morales MS, Christie DA, Johnson NC, Chen F, D’Arrigo R, Fowler AM, Gou X, Fang K (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3(9):822–826. doi: 10.1038/NCLIMATE1936 CrossRefGoogle Scholar
  36. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the Northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881. doi: 10.1175/JCLI3826.1 CrossRefGoogle Scholar
  37. Morgenstern O et al (2010) Anthropogenic forcing of the Northern annular mode in CCMVal-2 models. J Geophys Res 115:D00M03. doi: 10.1029/2009JD013347 Google Scholar
  38. Perlwitz J, Graf H-F (1995) The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J Clim 8:2281–2295CrossRefGoogle Scholar
  39. Perlwitz J, Harnik N (2004) Downward coupling between the stratosphere and troposphere: the relative roles of wave and zonal mean processes. J Clim 17:4902–4909CrossRefGoogle Scholar
  40. Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554CrossRefGoogle Scholar
  41. Quadrelli R, Wallace JM (2002) Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys Res Lett 29(23):47–51Google Scholar
  42. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219. doi: 10.1029/1998RG000054 CrossRefGoogle Scholar
  43. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi: 10.1029/L023226 Google Scholar
  44. Scaife AA et al (2012) Climate change projections and stratosphere–troposphere Interaction. Clim Dyn 38:2089–2097. doi: 10.1007/s00382-011-1080-7 CrossRefGoogle Scholar
  45. Schimanke S, Körper J, Spangehl T, Cubasch U (2011) Multi-decadal variability of sudden stratospheric warmings in an AOGCM. Geophys Res Lett 38(1):1944–8007. doi: 10.1029/2010GL045756 Google Scholar
  46. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi: 10.1029/2005JD006286 Google Scholar
  47. Taguchi M, Hartmann DL (2005) Interference of extratropical surface climate anomalies induced by El Nino and stratospheric sudden warmings. Geophys Res Lett 32:L04709. doi: 10.1029/2004GL022004 Google Scholar
  48. Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L24704. doi: 10.1029/2006GL027881 CrossRefGoogle Scholar
  49. van Loon H, Labitzke K (1987) The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennial Oscillation. Mon Weather Rev 115:357–369. doi: 10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2 CrossRefGoogle Scholar
  50. Walter K, Graf H-F (2002) On the changing nature of the regional connection between the North Atlantic Oscillation and sea surface temperature. J Geophys Res 107(D17):4338. doi: 10.1029/2001JD000850 CrossRefGoogle Scholar
  51. Walter K and Graf H-F (2005) The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmos Chem Phys 5:239–248. SRef-ID: 1680-7324/acp/2005-5-239Google Scholar
  52. Walter K, Graf H-F (2006) Life cycles of North Atlantic teleconnections under strong and weak polar vortex conditions. Q J R Meteorol Soc 132:467–483. doi: 10.1256/qj.05.25 CrossRefGoogle Scholar
  53. Wei K, Chen W, Huang R (2007) Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys Res Lett 34:L16814. doi: 10.1029/2007GL030478 Google Scholar
  54. Wittman MAH, Polvani LM, Scott RK, Charlton AJ (2004) Stratospheric influence on Baroclinic lifecycles and its connection to the Arctic Oscillation. Geophys Res Lett 31:L16113. doi: 10.1029/2004GL020503 CrossRefGoogle Scholar
  55. Wittman MAH, Charlton AJ, Polvani LM (2007) The effect of lower stratospheric shear on Baroclinic instability. J Atmos Sci 64:479–496. doi: 10.1175/JAS3828.1 CrossRefGoogle Scholar
  56. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi: 10.1007/s00382-011-1167-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hans-F. Graf
    • 1
    Email author
  • Davide Zanchettin
    • 2
  • Claudia Timmreck
    • 2
  • Matthias Bittner
    • 2
  1. 1.Centre for Atmospheric ScienceUniversity of CambridgeCambridgeUK
  2. 2.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations