Climate Dynamics

, Volume 42, Issue 7–8, pp 1715–1732 | Cite as

Sensitivity of a coupled climate model to canopy interception capacity

  • T. Davies-BarnardEmail author
  • P. J. Valdes
  • C. D. Jones
  • J. S. Singarayer


The canopy interception capacity is a small but key part of the surface hydrology, which affects the amount of water intercepted by vegetation and therefore the partitioning of evaporation and transpiration. However, little research with climate models has been done to understand the effects of a range of possible canopy interception capacity parameter values. This is in part due to the assumption that it does not significantly affect climate. Near global evapotranspiration products now make evaluation of canopy interception capacity parameterisations possible. We use a range of canopy water interception capacity values from the literature to investigate the effect on climate within the climate model HadCM3. We find that the global mean temperature is affected by up to −0.64 K globally and −1.9 K regionally. These temperature impacts are predominantly due to changes in the evaporative fraction and top of atmosphere albedo. In the tropics, the variations in evapotranspiration affect precipitation, significantly enhancing rainfall. Comparing the model output to measurements, we find that the default canopy interception capacity parameterisation overestimates canopy interception loss (i.e. canopy evaporation) and underestimates transpiration. Overall, decreasing canopy interception capacity improves the evapotranspiration partitioning in HadCM3, though the measurement literature more strongly supports an increase. The high sensitivity of climate to the parameterisation of canopy interception capacity is partially due to the high number of light rain-days in the climate model that means that interception is overestimated. This work highlights the hitherto underestimated importance of canopy interception capacity in climate model hydroclimatology and the need to acknowledge the role of precipitation representation limitations in determining parameterisations.


Interception GCM Land–atmosphere interactions Evapotranspiration Canopy storage capacity 



We would like to thank John Gash for his comments on a draft version of the manuscript, as well as the two anonymous reviewers for their comments on the submitted manuscript. We gratefully acknowledge Diego Miralles for providing the canopy evaporation satellite product for comparison. CDJ is supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). TDB is supported by Natural Environment Research Council Dtg NE/J500033/1.

Supplementary material

382_2014_2100_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2033 kb)


  1. Best MJ, Pryor M, Clark DB et al (2011) The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi: 10.5194/gmd-4-677-2011 CrossRefGoogle Scholar
  2. Booth BBB, Jones CD, Collins M et al (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002. doi: 10.1088/1748-9326/7/2/024002 CrossRefGoogle Scholar
  3. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res Atmos 115:D23113. doi: 10.1029/2010JD014262 CrossRefGoogle Scholar
  4. Breuer L, Eckhardt K, Frede H-G (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293. doi: 10.1016/S0304-3800(03)00274-6 CrossRefGoogle Scholar
  5. Clark DB, Mercado LM, Sitch S et al (2011) The joint UK land environment simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. doi: 10.5194/gmd-4-701-2011 CrossRefGoogle Scholar
  6. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81. doi: 10.1007/s003820000094 CrossRefGoogle Scholar
  7. Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-system model: HadGEM2. Geosci Model Dev 4:1051–1075. doi: 10.5194/gmd-4-1051-2011 CrossRefGoogle Scholar
  8. Cox PM (2001) Description of the TRIFFID dynamic global vegetation model. Hadley Cent Tech Note 24:1–16Google Scholar
  9. Cox P, Huntingford C, Harding R (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212–213:79–94. doi: 10.1016/S0022-1694(98)00203-0 CrossRefGoogle Scholar
  10. Cox PM, Betts RA, Bunton CB et al (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203. doi: 10.1007/s003820050276 CrossRefGoogle Scholar
  11. Crétat J, Vizy EK, Cook KH (2013) How well are daily intense rainfall events captured by current climate models over Africa? Clim Dyn:1–21. doi: 10.1007/s00382-013-1796-7
  12. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  13. De Noblet-Ducoudré N, Boisier J-P, Pitman A et al (2012) Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Clim 25:3261–3281. doi: 10.1175/JCLI-D-11-00338.1 CrossRefGoogle Scholar
  14. Demory M-E (2009) Does overestimated canopy interception weaken the UK land surface model response to precipitation events? ILeaps Newsl 7:14–16Google Scholar
  15. Desborough CE, Pitman AJ, McAvaney B (2001) Surface energy balance complexity in GCM land surface models. Part II: coupled simulations. Clim Dyn 17:615–626. doi: 10.1007/s003820000131 CrossRefGoogle Scholar
  16. Dolman AJ, Gregory D (1992) The parametrization of rainfall interception in GCMs. Q J R Meteorol Soc 118:455–467. doi: 10.1002/qj.49711850504 CrossRefGoogle Scholar
  17. Dunkerley D (2000) Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrol Process 14:669–678. doi: 10.1002/(SICI)1099-1085(200003)14:4<669:AID-HYP965>3.0.CO;2-I CrossRefGoogle Scholar
  18. Dunkerley DL, Booth TL (1999) Plant canopy interception of rainfall and its significance in a banded landscape, arid western New South Wales, Australia. Water Resour Res 35:1581–1586. doi: 10.1029/1999WR900003 CrossRefGoogle Scholar
  19. Dykes AP (1997) Rainfall interception from a lowland tropical rainforest in Brunei. J Hydrol 200:260–279. doi: 10.1016/S0022-1694(97)00023-1 CrossRefGoogle Scholar
  20. Eckhardt K, Breuer L, Frede H-G (2003) Parameter uncertainty and the significance of simulated land use change effects. J Hydrol 273:164–176. doi: 10.1016/S0022-1694(02)00395-5 CrossRefGoogle Scholar
  21. Essery R, Best M, Cox P (2001) MOSES 2.2 technical documentation. Hadley Centre Technical NoteGoogle Scholar
  22. Garcia-Estringana P, Alonso-Blázquez N, Alegre J (2010) Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J Hydrol 389:363–372. doi: 10.1016/j.jhydrol.2010.06.017 CrossRefGoogle Scholar
  23. Gash JHC (1979) An analytical model of rainfall interception by forests. Q J R Meteorol Soc 105:43–55. doi: 10.1002/qj.49710544304 CrossRefGoogle Scholar
  24. Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24:3011–3025. doi: 10.1002/hyp.7712 CrossRefGoogle Scholar
  25. Gregory D, Smith RNB, Cox PM (1994) Canopy, surface and soil hydrology. Unified Model documentation paper 25. Bracknell, UKGoogle Scholar
  26. Herwitz SR (1985) Interception storage capacities of tropical rainforest canopy trees. J Hydrol 77:237–252. doi: 10.1016/0022-1694(85)90209-4 CrossRefGoogle Scholar
  27. Jackson L, Vellinga M (2013) Multidecadal to centennial variability of the AMOC: HadCM3 and a perturbed physics ensemble. J Clim 26:2390–2407. doi: 10.1175/JCLI-D-11-00601.1 CrossRefGoogle Scholar
  28. Jasechko S, Sharp ZD, Gibson JJ et al (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. doi: 10.1038/nature11983 CrossRefGoogle Scholar
  29. Keim RF, Skaugset AE, Weiler M (2006) Storage of water on vegetation under simulated rainfall of varying intensity. Adv Water Resour 29:974–986. doi: 10.1016/j.advwatres.2005.07.017 CrossRefGoogle Scholar
  30. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806. doi: 10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  31. Klaassen W, Bosveld F, de Water E (1998) Water storage and evaporation as constituents of rainfall interception. J Hydrol 212–213:36–50. doi: 10.1016/S0022-1694(98)00200-5 CrossRefGoogle Scholar
  32. Kool D, Agam N, Lazarovitch N et al (2014) A review of approaches for evapotranspiration partitioning. Agric For Meteorol 184:56–70. doi: 10.1016/j.agrformet.2013.09.003 CrossRefGoogle Scholar
  33. Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J Hydrometeorol 8:862–880. doi: 10.1175/JHM596.1 CrossRefGoogle Scholar
  34. Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124:171–191. doi: 10.1016/j.agrformet.2004.01.010 CrossRefGoogle Scholar
  35. Liu C, Haines K, Iwi A, Smith D (2012) Comparing the UK met office climate prediction system DePreSys with idealized predictability in the HadCM3 model. Q J R Meteorol Soc 138:81–90. doi: 10.1002/qj.904 CrossRefGoogle Scholar
  36. Lloyd CR, Gash JHC, Shuttleworth WJ, de O Marques FA (1988) The measurement and modelling of rainfall interception by Amazonian rain forest. Agric For Meteorol 43:277–294. doi: 10.1016/0168-1923(88)90055-X CrossRefGoogle Scholar
  37. Macinnis-Ng CMO, Flores EE, Müller H, Schwendenmann L (2014) Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama. Hydrol Process 28:2174–2184. doi: 10.1002/hyp.9754 CrossRefGoogle Scholar
  38. Mao J, Pitman AJ, Phipps SJ et al (2011) Global and regional coupled climate sensitivity to the parameterization of rainfall interception. Clim Dyn 37:171–186. doi: 10.1007/s00382-010-0862-7 CrossRefGoogle Scholar
  39. Martin GM, Bellouin N, Collins WJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. doi: 10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  40. Miralles DG, Gash JH, Holmes TRH et al (2010) Global canopy interception from satellite observations. J Geophys Res Atmos 115:D16122. doi: 10.1029/2009JD013530 CrossRefGoogle Scholar
  41. Motahari M, Attarod P, Pypker TG et al (2013) Rainfall interception in a Pinus eldarica plantation in a semi-arid climate zone: an application of the gash model. J Agric Sci Technol 15:981–994Google Scholar
  42. Murphy JM, Booth BBB, Collins M et al (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans R Soc Math Phys Eng Sci 365:1993–2028. doi: 10.1098/rsta.2007.2077 CrossRefGoogle Scholar
  43. Oleson KW, Niu G-Y, Yang Z-L et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113:n/a–n/a. doi: 10.1029/2007JG000563
  44. Pitman AJ, Henderson-Sellers A, Yang Z-L (1990) Sensitivity of regional climates to localized precipitation in global models. Nature 346:734–737. doi: 10.1038/346734a0 CrossRefGoogle Scholar
  45. Pitman AJ, Yang Z-L, Henderson-Sellers A (1993) Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model. Clim Dyn 9:33–41. doi: 10.1007/BF00208012 CrossRefGoogle Scholar
  46. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  47. Roeckner E, Bäuml G, Bonventura L et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description, report 349, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  48. Rutter AJ, Kershaw KA, Robins PC, Morton AJ (1971) A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric Meteorol 9:367–384. doi: 10.1016/0002-1571(71)90034-3 CrossRefGoogle Scholar
  49. Savenije HHG (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Process 18:1507–1511. doi: 10.1002/hyp.5563 CrossRefGoogle Scholar
  50. Scott R, Koster RD, Entekhabi D, Suarez MJ (1995) Effect of a canopy interception reservoir on hydrological persistence in a general circulation model. J Clim 8:1917–1922. doi: 10.1175/1520-0442(1995)008<1917:EOACIR>2.0.CO;2 CrossRefGoogle Scholar
  51. Sellers PJ, Randall DA, Collatz GJ et al (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J Clim 9:676–705. doi: 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2 CrossRefGoogle Scholar
  52. Shuttleworth WJ (1988) Macrohydrology: the new challenge for process hydrology. J Hydrol 100:31–56. doi: 10.1016/0022-1694(88)90180-1 CrossRefGoogle Scholar
  53. Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain? J Clim 20:4801–4818. doi: 10.1175/JCLI4263.1 CrossRefGoogle Scholar
  54. Teuling AJ, Uijlenhoet R, van den Hurk B, Seneviratne SI (2009) Parameter sensitivity in LSMs: an analysis using stochastic soil moisture models and ELDAS soil parameters. J Hydrometeorol 10:751–765. doi: 10.1175/2008JHM1033.1 CrossRefGoogle Scholar
  55. Van den Hoof C, Vidale PL, Verhoef A, Vincke C (2013) Improved evaporative flux partitioning and carbon flux in the land surface model JULES: impact on the simulation of land surface processes in temperate Europe. Agric For Meteorol 181:108–124. doi: 10.1016/j.agrformet.2013.07.011 CrossRefGoogle Scholar
  56. Wallace J, Macfarlane C, McJannet D et al (2013) Evaluation of forest interception estimation in the continental scale Australian water resources assessment-landscape (AWRA-L) model. J Hydrol 499:210–223. doi: 10.1016/j.jhydrol.2013.06.036 CrossRefGoogle Scholar
  57. Wang G, Eltahir EAB (2000) Modeling the biosphere–atmosphere system: the impact of the subgrid variability in rainfall interception. J Clim 13:2887–2899. doi: 10.1175/1520-0442(2000)013<2887:MTBAST>2.0.CO;2 CrossRefGoogle Scholar
  58. Warrilow DA, Sangster AB, Slingo J (1986) Modelling of land surface processes and their influence on European climate. Met office technical note DCTN 38, Bracknell, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Davies-Barnard
    • 1
    Email author
  • P. J. Valdes
    • 1
  • C. D. Jones
    • 2
  • J. S. Singarayer
    • 3
  1. 1.School of Geographical SciencesUniversity of BristolBristolUK
  2. 2.Met Office Hadley CentreExeterUK
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations