Advertisement

Climate Dynamics

, Volume 43, Issue 9–10, pp 2831–2854 | Cite as

Ocean feedback to tropical cyclones: climatology and processes

  • Swen Jullien
  • Patrick Marchesiello
  • Christophe E. Menkes
  • Jérôme Lefèvre
  • Nicolas C. Jourdain
  • Guillaume Samson
  • Matthieu Lengaigne
Article

Abstract

This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air–sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air–sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air–sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C−1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.

Keywords

Tropical cyclones Air-sea coupling Modeling 

Notes

Acknowledgments

The simulations of this study were conducted with HPC resources from the Computing Center of Region Midi-Pyrénées (CALMIP, Toulouse, France; Grants 2011, 2012, 2013—Project 1044). We also thanks Alexis Chaigneau for his help on the ocean eddy tracking procedure; Florian Lemarié for his coupling algorithm and helpful discussions; and two anonymous reviewers for constructive comments.

References

  1. Adler R, Huffman G, Bolvin D, Curtis S, Nelkin E (2000) Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J Appl Meteorol 39(12):2007–2023CrossRefGoogle Scholar
  2. Balaguru K, Chang P, Saravanan R, Leung LR, Xu Z, Li M, Hsieh JS (2012) Ocean barrier layers’ effect on tropical cyclone intensification. Proc Natl Acad Sci 109(36):14343–14347. doi: 10.1073/pnas.1201364109, http://www.pnas.org/content/109/36/14343.full.pdf+html Google Scholar
  3. Bao JW, Wilczak JM, Choi JK, Kantha LH (2000) Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon Weather Rev 128(7):2190–2210CrossRefGoogle Scholar
  4. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Boning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, Mcclean J, Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567. doi: 10.1007/s10236-006-0082-1 Google Scholar
  5. Bender MA, Ginis I (2000) Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review 128(4):917–946. doi: 10.1175/1520-0493(2000)128<0917:rcsoho>2.0.co;2
  6. Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res Atmos 98(D12):23,245–23,263CrossRefGoogle Scholar
  7. Brown JR, Moise AF, Colman RA (2013) The south pacific convergence zone in CMIP5 simulations of historical and future climate. Clim Dyn 41(7–8):2179–2197. doi: 10.1007/s00382-012-1591-x Google Scholar
  8. Chaigneau A, Gizolme A, Grados C (2008) Mesoscale eddies off peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog Oceanogr 79(2–4):106–119. doi: 10.1016/j.pocean.2008.10.013 CrossRefGoogle Scholar
  9. Chaigneau A, Eldin G, Dewitte B (2009) Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog Oceanogr. doi: 10.1016/j.pocean.2009.07.012
  10. Chang SW, Anthes RA (1978) Numerical simulations of oceans non-linear, baroclinic response to translating hurricanes. J Phys Oceanogr 8(3):468–480. doi: 10.1175/1520-0485(1978)008<0468:nsoton.>2.0.co;2
  11. Charney JG, Eliassen A (1964) On the growth of the hurricane depression. J Atmos Sci 21:68–75CrossRefGoogle Scholar
  12. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81(350):639–640. doi: 10.1002/qj.49708135027 CrossRefGoogle Scholar
  13. Chauvin F, Royer JF, Deque D (2006) Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim Dyn 27:377–399CrossRefGoogle Scholar
  14. Couvelard X, Marchesiello P, Gourdeau L, Lefèvre J (2008) Barotropic zonal jets induced by islands in the southwest pacific. J Phys Oceanogr 38(10):2185–2204. doi: 10.1175/2008JPO3903.1 CrossRefGoogle Scholar
  15. Craig G, Gray S (1996) Cisk or wishe as the mechanism for tropical cyclone intensification. J Atmos Sci 53(23):3528–3540. doi: 10.1175/1520-0469(1996)053<3528:cowatm>2.0.co;2 Google Scholar
  16. da Silva A, Young AC, Levitus S (1994) Atlas of surface marine data 1994, volume 1: algorithms and procedures. Technical report 6, U.S. Department of Commerce, NOAA, NESDISGoogle Scholar
  17. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi: 10.1029/2004JC002378
  18. Debreu L, Marchesiello P, Penven P, Cambon G (2012) Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model. doi: 10.1016/j.ocemod.2012.03.003
  19. Demaria M, Kaplan J (1994) Sea-surface temperature and the maximum intensity of atlantic tropical cyclones. J Clim 7(9):1324–1334. doi: 10.1175/1520-0442(1994)007<1324:sstatm>2.0.co;2 Google Scholar
  20. Diamond HJ, Lorrey AM, Knapp KR, Levinson DH (2012) Development of an enhanced tropical cyclone tracks database for the southwest pacific from 1840 to 2010. Int J Climatol 32(14):2240–2250. doi: 10.1002/joc.2412 Google Scholar
  21. Donelan M (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31(18). doi: 10.1029/2004gl019460
  22. Doyle J (2002) Coupled atmosphere-ocean wave simulations under high wind conditions. Mon Weather Rev 130(12):3087–3099. doi: 10.1175/1520-0493(2002)130<3087:caowsu>2.0.co;2 Google Scholar
  23. Emanuel KA (1986) An air sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci 43(6):585–604. doi: 10.1175/1520-0469(1986)043<0585:aasitf>2.0.co;2 Google Scholar
  24. Emanuel KA (1988) The maximum intensity of hurricanes. Journal of the Atmospheric Sciences 45(7):1143–1155. doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2 Google Scholar
  25. Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Rev 138(3):688–704. doi: 10.1175/2009MWR2976.1 CrossRefGoogle Scholar
  26. Gray WM (1975) Tropical cyclone genesis. Technical report no 234, Colorado State University, Fort Collins COGoogle Scholar
  27. Hill K, Lackmann G (2009) Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: sensitivity to turbulence parameterization and grid spacing. Mon Weather Rev 137(2):745–765CrossRefGoogle Scholar
  28. Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54(21):2519–2541. doi: 10.1175/1520-0469(1997)054<2519:tmpiot>2.0.co;2 Google Scholar
  29. Janjić Z (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122(5):927–945CrossRefGoogle Scholar
  30. Janssen P (1989) Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19(6):745–754. doi: 10.1175/1520-0485(1989)019<0745:wisatd>2.0.co;2
  31. Jourdain NC, Marchesiello P, Menkes CE, Lefevre J, Vincent EM, Lengaigne M, Chauvin F (2011) Mesoscale simulation of tropical cyclones in the south pacific: climatology and interannual variability. J Clim 24(1):3–25. doi: 10.1175/2010jcli3559.1 CrossRefGoogle Scholar
  32. Jullien S, Menkes CE, Marchesiello P, Jourdain NC, Lengaigne M, Koch-Larrouy A, Lefevre J, Vincent EM, Faure V (2012) Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J Phys Oceanogr 42(11):1882–1906. doi: 10.1175/jpo-d-11-0133.1 CrossRefGoogle Scholar
  33. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo J, Fiorino M, Potter G (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83(11):1631–1643. doi: 10.1175/bams-83-11-1631 CrossRefGoogle Scholar
  34. Large W (2006) Surface fluxes for practitioners of global ocean data assimilation. In: Chassignet E, Verron J (eds) Ocean weather forecasting, Springer, Netherlands, Chap 9, pp 229–270. doi: 10.1007/1-4020-4028-8_9
  35. Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):null-403. doi: 10.1029/94rg01872
  36. Lemarié F (2008) Algorithmes de schwarz et couplage océan-atmosphère. PhD thesis, Université Joseph-Fourier—Grenoble IGoogle Scholar
  37. Lemarié F, Debreu L, Shchepetkin A, McWilliams J (2012) On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Model 52–53:9–35. doi: 10.1016/j.ocemod.2012.04.007 CrossRefGoogle Scholar
  38. Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20. doi: 10.1016/S1463-5003(00)00013-5 CrossRefGoogle Scholar
  39. Marchesiello P, Debreu L, Couvelard X (2009) Spurious diapycnal mixing in terrain-following coordinate models: the problem and a solution. Ocean Model. 26(3–4):156–169. doi: 10.1016/j.ocemod.2008.09.004 CrossRefGoogle Scholar
  40. Marchesiello P, Lefèvre J, Vega A, Couvelard X, Menkes C (2010) Coastal upwelling, circulation and heat balance around new caledonia’s barrier reef. Mar Pollut Bull 61(7–12):432–448. doi: 10.1016/j.marpolbul.2010.06.043 CrossRefGoogle Scholar
  41. Marchesiello P, Capet X, Menkes C, Kennan SC (2011) Submesoscale dynamics in tropical instability waves. Ocean Model 39:31–46CrossRefGoogle Scholar
  42. Menkes CE, Lengaigne M, Marchesiello P, Jourdain NC, Vincent EM, Lefevre J, Chauvin F, Royer JF (2012) Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim Dyn 38(1–2):301–321. doi: 10.1007/s00382-011-1126-x CrossRefGoogle Scholar
  43. Montgomery M, Sang N, RK S, Persing J (2009) Do tropical cyclones intensify by wishe. Q J R Meteorol Soc 135:1697–1714Google Scholar
  44. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Kumar MRR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the bay of bengal. J Geophys Res Oceans 117. doi: 10.1029/2012jc008433
  45. Nolan DS, Stern DP, Zhang JA (2003) Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of hurricane isabel (2003). Part II: inner-core boundary layer and eyewall structure. Mon Weather Rev 137(11):3675–3698. doi: 10.1175/2009MWR2786.1 CrossRefGoogle Scholar
  46. Ooyama K (1969) Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci 26:3–40CrossRefGoogle Scholar
  47. Penven P, Debreu L, Marchesiello P, McWilliams JC (2006) Evaluation and application of the roms 1-way embedding procedure to the central california upwelling system. Ocean Model 12(1–2):157–187. doi: 10.1016/j.ocemod.2005.05.002 CrossRefGoogle Scholar
  48. Penven P, Marchesiello P, Debreu L, Lefèvre J (2008) Software tools for pre- and post-processing of oceanic regional simulations. Environ Model Softw 23(5):660–662. doi: 10.1016/j.envsoft.2007.07.004 CrossRefGoogle Scholar
  49. Powell M, Vickery P, Reinhold T (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422(6929):279–283. doi: 10.1038/nature01481 CrossRefGoogle Scholar
  50. Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11(2):153–175CrossRefGoogle Scholar
  51. Qiu B, Scott RB, Chen S (2008) Length scales of eddy generation and nonlinear evolution of the seasonally modulated south pacific subtropical countercurrent. J Phys Oceanogr 38(7):1515–1528. doi: 10.1175/2007JPO3856.1 CrossRefGoogle Scholar
  52. Rotunno R, Emanuel KA (1987) An air-sea interaction theory for tropical cyclones. 2. Evolutionary study using a nonhydrostatic axisymmetrical numerical-model. J Atmos Sci 44(3):542–561. doi: 10.1175/1520-0469(1987)044<0542:aaitft>2.0.co;2
  53. Royer JF, Chauvin F, Timbal B, Araspin P, Grimal D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Change 38(3):307–343CrossRefGoogle Scholar
  54. Sandery PA, Brassington GB, Craig A, Pugh T (2010) Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the australian region. Mon Weather Rev 138(6):2074–2091. doi: 10.1175/2010mwr3101.1 CrossRefGoogle Scholar
  55. Schade LR (2000) Tropical cyclone intensity and sea surface temperature. J Atmos Sci 57(18):3122–3130. doi: 10.1175/1520-0469(2000)057<3122:tciass>2.0.co;2 Google Scholar
  56. Schade LR, Emanuel KA (1999) The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. J Atmos Sci 56(4):642–651. doi: 10.1175/1520-0469(1999)056<0642:toseot>2.0.co;2 Google Scholar
  57. Schubert WH, Montgomery MT, Taft RK, Guinn TA, Fulton SR, Kossin JP, Edwards JP (1999) Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J Atmos Sci 56(9):1197–1223. doi: 10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2 Google Scholar
  58. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24(16):4368–4384. doi: 10.1175/2011jcli4104.1 CrossRefGoogle Scholar
  59. Shay LK, Elsberry RL, Black PG (1989) Vertical structure of the ocean current response to a hurricane. J Phys Oceanogr 19(5):649–669. doi: 10.1175/1520-0485(1989)019<0649:vsotoc>2.0.co;2 Google Scholar
  60. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404. doi: 10.1016/j.ocemod.2004.08.002 CrossRefGoogle Scholar
  61. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132(12):3019–3032. doi: 10.1175/MWR2830.1 CrossRefGoogle Scholar
  62. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485. doi: 10.1016/j.jcp.2007.01.037 CrossRefGoogle Scholar
  63. Slutz RJ, Lubker SJ, Hiscox JD, Woodruff S, Jenne R, Joseph D, Steurer P, Elms J (1985) Comprehensive ocean-atmosphere data set: Release 1. I: Climate Research Program, ERL/NOAA, Boulder COGoogle Scholar
  64. Smith RK, Montgomery MT (2010) Hurricane boundary-layer theory. Q J R Meteorol Soc 136:1–6Google Scholar
  65. Smith RK, Montgomery MT, Nguyen SV (2009) Tropical cyclone spin-up revisited. Q J R Meteorol Soc 135:1321–1335CrossRefGoogle Scholar
  66. Stern DP, Nolan DS (2011) On the height of the warm core in tropical cyclones. J Atmos Sci 69(5):1657–1680. doi: 10.1175/JAS-D-11-010.1 CrossRefGoogle Scholar
  67. Sutyrin GG, Khain AP (1984) On the effect of air-ocean interaction on intensity of moving tropical cyclone. Izvestiya, Atm Oce Phys 20:787–794Google Scholar
  68. Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the south pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn 36(9–10):1881–1896. doi: 10.1007/s00382-009-0716-3 CrossRefGoogle Scholar
  69. Vincent EM, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain NC, Menkes CE, Jullien S (2012a) Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J Geophys Res 117:C02020. doi: 10.1029/2011JC007396
  70. Vincent EM, Lengaigne M, Vialard J, Madec G, Jourdain NC, Masson S (2012b) Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J Geophys Res 117:C05023. doi: 10.1029/2011jc007705
  71. Wada A (2009) Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical-cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling. J Geophys Res Atmos 114(D18). doi: 10.1029/2009JD011993
  72. Walsh KJE, Nguyen KC, McGregor JL (2004) Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22:47–56CrossRefGoogle Scholar
  73. Walsh KJE, Fiorino M, Landsea C, McInnes K (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J Clim 20(10):2307–2314CrossRefGoogle Scholar
  74. Wang Y, Wu CC (2004) Current understanding of tropical cyclone structure and intensity changes—a review. Meteorol Atmos Phys 87(4):257–278. doi: 10.1007/s00703-003-0055-6 CrossRefGoogle Scholar
  75. Wu CC, Lee CY, Lin II (2007) The effect of the ocean eddy on tropical cyclone intensity. J Atmos Sci 64(10):3562–3578. doi: 10.1175/JAS4051.1 CrossRefGoogle Scholar
  76. Yang B, Wang Y, Wang B (2007) The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J Atmos Sci 64(4):1165–1188. doi: 10.1175/JAS3971.1 CrossRefGoogle Scholar
  77. Zeng X, Beljaars A (2005) A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys Res Lett 32(14). doi: 10.1029/2005GL023030
  78. Zheng Z-W, Ho C-R, Zheng Q, Lo Y-T, Kuo N-J, Gopalakrishnan G (2010) Effects of preexisting cyclonic eddies on upper ocean responses to category 5 typhoons in the western north pacific. J Geophys Res 115:C09013. doi: 10.1029/2009JC005562

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Swen Jullien
    • 1
  • Patrick Marchesiello
    • 1
  • Christophe E. Menkes
    • 2
    • 3
  • Jérôme Lefèvre
    • 1
    • 3
  • Nicolas C. Jourdain
    • 5
    • 6
  • Guillaume Samson
    • 1
  • Matthieu Lengaigne
    • 2
    • 4
  1. 1.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, IRD/CNRS/University of ToulouseToulouseFrance
  2. 2.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, IPSLParisFrance
  3. 3.IRDNouméaNew Caledonia
  4. 4.Indo-French Cell for Water Sciences, IISc-NIO-IITM–IRD Joint International Laboratory, NIOGoaIndia
  5. 5.CIimate Change Research Centre, University of New South WalesSydneyAustralia
  6. 6.Laboratoire de Glaciologie et Géophysique de l’Environnement, Université de Grenoble / Centre National de la Recherche ScientifiqueGrenobleFrance

Personalised recommendations