Advertisement

Climate Dynamics

, Volume 43, Issue 9–10, pp 2813–2829 | Cite as

Ensemble of sea ice initial conditions for interannual climate predictions

  • Virginie GuemasEmail author
  • Francisco J. Doblas-Reyes
  • Kristian Mogensen
  • Sarah Keeley
  • Yongming Tang
Article

Abstract

Polar climate studies are severely hampered by the sparseness of the sea ice observations. We aim at filling this critical gap by producing two 5-member sea ice historical simulations strongly constrained by ocean and atmosphere observational data and covering the 1958–2006 and 1979–2012 periods. This is the first multi-member sea ice reconstruction covering more than 50 years. The obtained sea ice conditions are in reasonable agreement with the few available observations. These best estimates of sea ice conditions serve subsequently as initial sea ice conditions for a set of 28 3-year-long retrospective climate predictions. We compare it to a set in which the sea ice initial conditions are taken from a single-member sea ice historical simulation constrained by atmosphere observations only. We find an improved skill in predicting the Arctic sea ice area and Arctic near surface temperature but a slightly degraded skill in predicting the Antarctic sea ice area. We also obtain a larger spread between the members for the sea ice variables, thus more representative of the forecast error.

Keywords

Sea ice Arctic Antarctic Climate prediction  Initialization 

Notes

Acknowledgments

The three anonymous reviewers are greatly acknowledged for their contribution to improving the initial manuscript. This work was supported by the EU-funded QWeCI (FP7-ENV-2009-1-243964), CLIM-RUN (FP7-ENV-2010-1-265-192), SPECS (FP7-ENV-2012-308378), the MINECO-funded PICA-ICE (CGL2012-31987) projects and the Catalan Government. Oriol Mula-Valls, Domingo Manubens-Gil and Muhammad Asif are thoroughly acknowledged for the invaluable technical support. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación (RES).

Supplementary material

382_2014_2095_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1440 KB)

References

  1. Allan RJ, Ansell TJ (2006) A new globally complete monthly historical mean sea level pressure data set (hadslp2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Arribas A, Glover M, Maidens A, Peterson K, Gordon M, Maclachlan C, Graham R, Fereday D, Camp J, Scaife AA, Xavier P, Mclean P, Colman A, Cusack S (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139:1891–1910CrossRefGoogle Scholar
  3. Balmaseda MA, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Let 36:L0170. doi: 10.1029/2008GL035561 CrossRefGoogle Scholar
  4. Balmaseda MA, Vidar A, Anderson DLT (2008) The ecmwf oras3 ocean analysis system. Mon Weather Rev 136:3018–3034CrossRefGoogle Scholar
  5. Balmaseda MA, Mogensen KS, Weaver AT (2012) Evaluation of the ECMWF Ocean Reanalysis ORAS4. Q J R Meteorol Soc. doi: 10.1002/qj.2063
  6. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011a) Persistence and inherent predictability of Arctic Sea Ice in a GCM ensemble and observations. J Clim 24:231–250CrossRefGoogle Scholar
  7. Blanchard-Wrigglesworth E, Bitz CM, Holland MM (2011b) Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys Res Let 38:L18503. doi: 10.1029/2011GL048807 CrossRefGoogle Scholar
  8. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104CrossRefGoogle Scholar
  9. Cavalieri DC, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center. Digital media, BoulderGoogle Scholar
  10. Chevallier M, Salas-Mélia D (2011) The role of sea ice thickness distribution in the arctic sea ice potential predictability: a diagnostic approach with a coupled gcm. J Clim 25:3025–3038. doi: 10.1175/JCLI-D-11-00209.1 CrossRefGoogle Scholar
  11. Chevallier M, Salas-Mélia D, Voldoire A, Déqué M, Garric G (2013) Seasonal forecasts of the pan-arctic sea ice extent using a gcm-based seasonal prediction system. J Clim. doi: 10.1175/JCLI-D-12-00612.1
  12. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Let 35:L01703. doi: 10.1029/2007GL031972 CrossRefGoogle Scholar
  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  14. Deutsches_Hydrographisches_Institute (1950) Atlas of ice conditions in the north atlantic ocean and general charts of the ice conditions of the north and south polar regions. Publ 2335, HamburgGoogle Scholar
  15. Doblas-Reyes FJ, Hagedorn R, Palmer TN, Morcrette JJ (2006) Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys Res Let 33:L07708. doi: 10.1029/2005GL025061 CrossRefGoogle Scholar
  16. Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D (2010) Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech Memo 621, 45 ppGoogle Scholar
  17. Du H, Doblas-Reyes FJ, Garcia-Serrano J, Guemas V, Soufflet Y, Wouters B (2012) Impact of initial perturbations in decadal predictions. Clim Dyn. doi: 10.1007/s00382-011-1285-9
  18. Duliere V, Fichefet T (2007) On the assimilation of ice velocity and concentration data into large-scale sea ice models. Ocean Sci Discuss 4:26530CrossRefGoogle Scholar
  19. Ethe C, Aumont O, Foujols MA, Levy M (2006) NEMO reference manual, tracer component: NEMO-TOP. Preliminary version. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL). France (28), pp 1288–1619Google Scholar
  20. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res 113:D0110. doi: 10.1029/2007JD008470 Google Scholar
  21. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646CrossRefGoogle Scholar
  22. Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Let 36:L07503. doi: 10.1029/2009GL037274 CrossRefGoogle Scholar
  23. Garcia-Serrano J, Doblas-Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040. doi: 10.1007/s00382-012-1413-1 CrossRefGoogle Scholar
  24. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355CrossRefGoogle Scholar
  25. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dyn 19(1):61–83. doi: 10.1007/s00382-001-0209-5 CrossRefGoogle Scholar
  26. Gueremy JF, Deque M, Braun A, Piedelievre JP (2005) Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: coupled versus uncoupled model. Tellus 57A:308–319CrossRefGoogle Scholar
  27. Hakkinen S, Proshutinsky A (2004) Freshwater content variability in the Arctic Ocean. J Geophys Res 109:C03051. doi: 10.1029/2003JC001940 Google Scholar
  28. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi: 10.1029/2010RG000345 Google Scholar
  29. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kallberg P, Koenigk T, McGrath R, Miranda P, Noije TV, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willen U (2010) EC-Earth: a seamless earth system prediction approach in action. BAMS 91:1357–1363CrossRefGoogle Scholar
  30. Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B (2012) EC-Earth V2.2: description and validation of a new seamless Earth system prediction model. Clim Dyn. doi: 10.1007/s00382-011-1228-5
  31. IPCC (2007) Climate change, 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. https://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
  32. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  33. Keenlyside NS, Latif M, Jungclaus J, Kornblueth L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  34. Knight RW (1984) Introduction to a new sea-ice database. Ann Glaciol 5:81–84Google Scholar
  35. Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2006) Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Clim Dyn 26:17–34. doi: 10.1007/s00382-005-0060-1 CrossRefGoogle Scholar
  36. Kwok R, Cunningham GF (2008) Icesat over arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res 113:C08010. doi: 10.1029/2008JC004753 Google Scholar
  37. Kwok R, Cunningham GF, Zwally HJ, Yi D (2007) Ice, cloud, and land elevation satellite (icesat) over arctic sea ice: retrieval of freeboard. J Geophys Res 112:C12013. doi: 10.1029/2006JC003978 CrossRefGoogle Scholar
  38. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 20032008. J Geophys Res 114:C07005. doi: 10.1029/2009JC005312 Google Scholar
  39. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Tech Note NCAR/TN-460+STR, Natl Cent for Atmos Res, BoulderGoogle Scholar
  40. Levitus S, Boyer TP (1994) World ocean Atlas 1994 volume 4: temperature, number 4, 1994Google Scholar
  41. Lindsay RW (2010) New unified sea ice thickness climate data record. Eos Trans AGU 91(44):405–416CrossRefGoogle Scholar
  42. Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice-ocean model. J Atmos Ocean Technol 23:742749CrossRefGoogle Scholar
  43. Madec G (2008) NEMO ocean engine. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL). France (27), pp 1288–1619Google Scholar
  44. Mahajan S, Zhang R, Delworth TL (2011) Impact of the atlantic meridional overturning circulation (amoc) on arctic surface air temperature and sea ice variability. J Clim 24:65736581Google Scholar
  45. Matei D, Baehr J, Jungclaus JH, Haak H, Muller WA, Marotzke J (2012) Multiyear prediction of monthly mean atlantic meridional overturning circulation at 26.5N. Science 335(6064):76–79. doi: 10.1126/science.1210299 CrossRefGoogle Scholar
  46. Mathiot P, Beatty CK, Fichefet T, Goosse H, Massonnet F, Vancoppenolle M (2012) Better constraints on the sea-ice state using global sea-ice data assimilation. Geosci Model Dev Discuss 5:1627–1667CrossRefGoogle Scholar
  47. Mogensen KS, Balmaseda MA, Weaver A (2011) The NEMOVAR ocean data assimilation as implemented in the ECMWF ocean analysis for system 4. ECMWF Technical, Memorandum 668Google Scholar
  48. Outten SD, Esau I (2011) A link between Arctic sea ice and recent cooling trends over Eurasia. Clim Change 110(3–4):1069–1075. doi: 10.1007/s10584-011-0334-z Google Scholar
  49. Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07003. doi: 10.1029/2007JC004558 Google Scholar
  50. Petoukhov V, Semenov V (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi: 10.1029/2009JD013568 CrossRefGoogle Scholar
  51. Pohlmann H, Jungclaus JH, Kohl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  52. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D14. doi: 10.1029/2002JD002670 Google Scholar
  53. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s Shrinking sea-ice cover. Science 315(5818):1533–1536CrossRefGoogle Scholar
  54. Sigmond M, Fyfe JC, Flato GM, Kharin VV, Merryfield WJ (2013) Seasonal forecast skill of arctic sea ice area in a dynamical forecast system. Geophys Res Let 40(3):529–534. doi: 10.1002/grl.50129 CrossRefGoogle Scholar
  55. Smith D, Cusack A, Colman A, Folland C, Harris G, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  56. Smith TM, Reynolds RW, Lawrimore TCPH (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  57. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn. doi: 10.1007/s00382-010-0947-3
  58. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) Arctic sea ice decline: Faster than forecast. Clim Change 110(3–4):1005–1027CrossRefGoogle Scholar
  59. Tang Q, Zhang X, Francis JA (2014) Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere 4:45–50. doi: 10.1038/nclimate2065
  60. Tang YM, Balmaseda MA, Mogensen KS, Keeley SPE, Janssen PAEM (2013) Sensitivity of sea ice thickness to observational constraints on sea ice concentration. ECMWF Tech Memo 707Google Scholar
  61. Tietsche S, Notz D, Jungclaus JH, Marotzke J (2012) Assimilation of sea-ice concentration in a global climate model—physical and statistical aspects. Ocean Sci Discuss 9:2403–2405CrossRefGoogle Scholar
  62. Tolstikov EI (1966) Atlas of the Antarctic. Glav Uprav Geod Kart MGSSSR, Moscow, vol 1, 126 ppGoogle Scholar
  63. Uppala S, Kallberg P, Hernandez A, Saarinen S, Fiorino M, Li X, Onogi K, Sokka N, Andrae U, da Costa Bechtol V (2004) ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2000. ECMWF Newsl 101:2–21Google Scholar
  64. Valcke S (2006) OASIS3 user guide. PRISM Support Initiative Report vol 3, 64 ppGoogle Scholar
  65. Voldoire A, Sanchez-Gomez E, y Melia DS, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, MChevallier, MDeque, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2012) The cnrm-cm5.1 global climate model: description and basic evaluation. Clim Dyn. doi: 10.1007/s00382-011-1259-y
  66. VonStorch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  67. Walsh JE, Johnson CM (1978) Analysis of Arctic sea ice fluctuations. J Phys Oceanogr 9(3):580–591CrossRefGoogle Scholar
  68. Wang W, Chen M, Kumar A (2013) Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon Weather Rev. doi: 10.1175/MWR-D-12-00057.1
  69. Weisheimer A, Doblas-Reyes F, Rogel P, Costa ED, Keenlyside N, Balmaseda M, Murphy J, Smith D, Collins M, Bhaskaran B, Palmer T (2007) Initialisation strategies for decadal hindcasts for the 1960–2005 period within the ENSEMBLES project. ECMWF Technical, Memorandum 521Google Scholar
  70. Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131(5):681–697CrossRefGoogle Scholar
  71. Zhang S, Lin CA, Greatbatch RJ (1995) A decadal oscillation due to the coupling between an ocean circulation model and a thermodynamic sea-ice model. J Mar Res 53(1):79–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Virginie Guemas
    • 1
    • 2
    Email author
  • Francisco J. Doblas-Reyes
    • 1
    • 3
  • Kristian Mogensen
    • 4
  • Sarah Keeley
    • 4
  • Yongming Tang
    • 4
  1. 1.Institut Català de Ciències del ClimaBarcelonaSpain
  2. 2.Centre National de Recherches Météorologiques, Groupe d’Etude de l’Atmosphère Météorologique, Météo-FranceCNRS, UMR3589ToulouseFrance
  3. 3.Institució Catalana de Recerca i Estudis AvançatBarcelonaSpain
  4. 4.European Center for Medium Range Weather ForecastsReadingUK

Personalised recommendations