Climate Dynamics

, Volume 43, Issue 9–10, pp 2777–2796 | Cite as

Evaluation of clouds and radiative fluxes in the EC-Earth general circulation model



Observations, mostly from the International Satellite Cloud Climatology (ISCCP), are used to assess clouds and radiative fluxes in the EC-Earth general circulation model, when forced by prescribed observed sea surface temperatures. An ISCCP instrument simulator is employed to consistently compare model outputs with satellite observations. The use of a satellite simulator is shown to be imperative for model evaluation. EC-Earth exhibits the largest cloud biases in the tropics. It generally underestimates the total cloud cover but overestimates the optically thick clouds, with the net result that clouds exert an overly strong cooling effect in the model. Every cloud type has its own source of bias. The magnitude of the cooling due to the shortwave cloud radiative effect (\(\mid \hbox {SWCRE}\mid\)) is underestimated for the stratiform low-clouds, because the model simulates too few of them. In contrast, \(\mid \hbox {SWCRE}\mid\) is overestimated for trade wind cumulus clouds, because in the model these are too thick. The clouds in the deep convection regions also lead to overestimate the \(\mid \hbox {SWCRE}\mid\). These clouds are generally too thick and there are too few mid and high thin clouds. These biases are consistent with the positive precipitation bias and the overly strong mass flux for deep convective plumes. Potential sources for the various cloud biases in the model are discussed.


EC-Earth Cloud bias Cloud metrics Moist convection Radiative fluxes bias 



The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant agreement no. 244067. The authors thank Pier Siebesma and Jelle van den Berk for the useful suggestions on the presentation. We are also grateful to the anonymous reviewers for their constructive comments that have helped the improvement of this paper. SRB data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. COSP was obtained from the CFMIP website. ISCCP, MODIS and PATMOS-x data were obtained from the ClimServ Data Center of IPSL/CNRS.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078CrossRefGoogle Scholar
  3. Barker HW, Stephens GL, Fu Q (1999) The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Q J R Meteorol Soc 125:2127–2152Google Scholar
  4. Bechtold P, Köhler M, Jung T, Leutbecher M, Doblas-Reyes F, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351CrossRefGoogle Scholar
  5. Beljaars ACM, Viterbo P (1999) The role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. North Holland Publishers, AmsterdamGoogle Scholar
  6. Bender FA-M, Rodhe H, Charlson RJ, Ekman AML, Loeb N (2006) 22 views of the global albedo-comparison between 20 GCMs and two satellites. Tellus 58A:320–330CrossRefGoogle Scholar
  7. Bennartz R (2007) Global assessment of marine boundary layer cloud droplet number concentration from satellite. J Geophys Res 112:D02201. doi: 10.1029/2006JD007547 Google Scholar
  8. Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne JL, Klein SA, Zhang Y, Marchand R, Haynes JM, Pincus R, John VO (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc 92(8):1023–1043. doi: 10.1175/2011BAMS2856.1 CrossRefGoogle Scholar
  9. Bony S, Lau K-M, Sud YC (1997) Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J Clim 10:2055–2077CrossRefGoogle Scholar
  10. Bony S, Dufresne J-L, LeTreut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86CrossRefGoogle Scholar
  11. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys Res Lett 32:L20806. doi: 10.1029/2005GL023851 CrossRefGoogle Scholar
  12. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden DJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482. doi: 10.1175/JCLI3819.1 CrossRefGoogle Scholar
  13. Bretherton CS, de Roode SR, Jakob C, Andreas EL, Intrieri J, Moritz RE, Persson POG (2000) A comparison of the ECMWF forecast model with observations over the annual cycle at SHEBA. J Geophys Res volume: FIRE Arctic Clouds Experiment Special IssueGoogle Scholar
  14. Bretherton CS, Hartmann DL (2009) Large-scale controls on cloudiness. Peer-reviewed book chapter for perturbed clouds in the climate system: their relationship to energy balance, atmospheric dynamics and precipitation. In: Heintzenberg J, Charlson RJ (eds) Strungmann Forum Reports, vol. 2, MIT Press, pp 217–234Google Scholar
  15. Bretherton CS, Wyant MC (1997) Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J Atmos Sci 54:148–167CrossRefGoogle Scholar
  16. Bretherton CS et al (1999) An intercomparison of radiatively-driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Q J R Meteorol Soc 125:391–423CrossRefGoogle Scholar
  17. Cess RD et al. (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res 101:12791–12794Google Scholar
  18. Chang FL, Li ZQ (2005) A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J Atmos Sci 62:3993–4009CrossRefGoogle Scholar
  19. Charlock TP, Ramanathan V (1985) The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J Atmos Sci 42:1405–1429CrossRefGoogle Scholar
  20. Chen R, Wood R, Li Z, Ferraro R, Chang F-L (2008) Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data. J Geophys Res 113:D00A02. doi: 10.1029/2007JD009596
  21. Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low level cloud feedback. Science 325:460–464. doi: 10.1126/science.1171255 CrossRefGoogle Scholar
  22. Derbyshire SH, Beau I, Bechtold P, Grandpeix J-Y, Piriou J-M, Redelsperger J-L, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130:3055–3079CrossRefGoogle Scholar
  23. Dhuria HL, Kyle HL (1990) Cloud types and the tropical earth radiation budget. J Clim 3:1409–1434CrossRefGoogle Scholar
  24. Dufresne J-L, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J Clim 21(19):5135–5144CrossRefGoogle Scholar
  25. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  26. Emanuel KA, Neelin JD, Bretherton CS (1994) On large-scale circulations in convecting atmospheres. Q J R Meteorol Soc 120:1111–1143CrossRefGoogle Scholar
  27. Forbes RM, Tompkins A (2011) An improved representation of cloud and precipitation. ECMWF Newsletter No. 129, 13–18Google Scholar
  28. Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62Google Scholar
  29. Greuell W, van Meijgaard E, Clerbaux N, Meirink JF (2011) Evaluation of model-predicted top-of-atmosphere radiation and cloud parameters over Africa with observations from GERB and SEVIRI. J Clim 24:4015–4036. doi: 10.1175/2011JCLI3856.1 CrossRefGoogle Scholar
  30. Guilyardi E, Braconnot P, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718CrossRefGoogle Scholar
  31. Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J Geophys Res 95:18687–18703Google Scholar
  32. Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi: 10.1007/s00382-011-1228-5 CrossRefGoogle Scholar
  33. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Dutra E, Bintanja R, van den Hurk B, van Noije T, Selten F, Sterl A, et al (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi: 10.1175/2010BAMS2877.1 Google Scholar
  34. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  35. Heymsfield AJ (2003) Properties of tropical and midlatitude ice cloud particle ensembles: part I: median mass diameters and terminal velocities. J Atmos Sci 60:2592–2611CrossRefGoogle Scholar
  36. Houze RA (1993) Cloud dynamics. Academic Press, New YorkGoogle Scholar
  37. Hu Y, Rodier S, Xu K, Sun W, Huang J, Lin B, Zhai P, Josset D (2010) Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J Geophys Res 115:D00H34. doi: 10.1029/2009JD012384
  38. Jakob C (2001) The representation of cloud cover in atmospheric general circulation models. PhD thesis, Ludwig-Maximilians-Universitaet Muenchen, p 193Google Scholar
  39. Jin Y, Rossow WB, Wylie DP (1996) Comparison of the climatologies of high-level clouds from HIRS and ISCCP. J Clim 9:2850–2879CrossRefGoogle Scholar
  40. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II reanalysis. Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  41. Kay JE et al (2012) Exposing global cloud biases in the community atmosphere model (CAM) using satellite observations and their corresponding instrument simulators. J Clim 25:5190–5207Google Scholar
  42. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorological Monographs, vol. 10. Am Meteorol Soc, Boston, MAGoogle Scholar
  43. Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1588–1606CrossRefGoogle Scholar
  44. Klein SA, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531CrossRefGoogle Scholar
  45. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi: 10.1002/jgrd.50141 CrossRefGoogle Scholar
  46. Klocke D, Pincus R, Quaas J (2011) On constraining estimates of climate sensitivity with present-day observations through model weighting. J Clim 24:6092–6099CrossRefGoogle Scholar
  47. Koenigk T, Brodeau L, Graversen RG, Karlsson J, Svensson G, Tjernstrom M, Willen U, Wyser K (2013) Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim Dyn 40(11):2719–2743. doi: 10.1007/s00382-012-1505-y CrossRefGoogle Scholar
  48. Köhler M (2005) Improved prediction of boundary layer clouds. ECMWF Newsletter, (104), ECMWF, Shinfield Park, Reading RG2 9AX, UKGoogle Scholar
  49. Korolev A, Field PR (2008) The effect of dynamics on mixed-phase clouds: theoretical considerations. J Atmos Sci 65:66–86CrossRefGoogle Scholar
  50. Kubar TL, Hartmann DL, Wood R (2007) Radiative and convective driving of tropical high clouds. J Clim 20:5510–5526CrossRefGoogle Scholar
  51. Kuo HL, Raymond WH (1980) A quasi-one-dimensional cumulus cloud model and parametrization of cumulus heating and mixing effects. Mon Weather Rev 108:991–1009CrossRefGoogle Scholar
  52. Lacagnina C, Selten F (2013a) Changes in the cloud properties in response to El Niño: a bivariate approach. Clim Dyn 40(11–12):2973–2991CrossRefGoogle Scholar
  53. Lacagnina C, Selten F (2013b) A novel diagnostic technique to investigate cloud-controlling factors. J Geophys Res Atmos 118:5979–5991. doi: 10.1002/jgrd.50511 CrossRefGoogle Scholar
  54. Lauer A, Hamilton K (2013) Simulating clouds with global climate models: a comparison of CMIP5 results with CMIP3 and satellite data. J Clim 26:3823–3845CrossRefGoogle Scholar
  55. Lin WY, Zhang MH, Loeb NG (2009) Seasonal variation of the physical properties of marine boundary layer clouds off the California coast. J Clim 22:2624–2638CrossRefGoogle Scholar
  56. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the earths top-of-atmosphere radiation budget. J Clim 22:748–766. doi: 10.1175/2008JCLI2637.1 CrossRefGoogle Scholar
  57. Ma C-C, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean atmosphere GCM study. J Clim 9:1635–1645CrossRefGoogle Scholar
  58. Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27 ISSN No. 1288–1619Google Scholar
  59. Marchand R, Ackerman T (2010) An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids. J Geophys Res 115:D16207. doi: 10.1029/2009JD013423 CrossRefGoogle Scholar
  60. Marchand R, Ackerman T, Smyth M, Rossow WB (2010) A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J Geophys Res 115:D16206. doi: 10.1029/2009JD013422 CrossRefGoogle Scholar
  61. Marchand R, Ackerman T (2011) A cloud-resolving model with an adaptive vertical grid for boundary layer clouds. J Atmos Sci 68:1058–1074. doi: 10.1175/2010JAS3638.1 CrossRefGoogle Scholar
  62. Martin GM, Johnson DW, Spice A (1994) The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51:1823–1842CrossRefGoogle Scholar
  63. Matheson MA, Coakley JA, Tahnk WR (2005) Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from advanced very high resolution radiometer observations. J Geophys Res 110:D24204CrossRefGoogle Scholar
  64. Morcrette JJ, Clough SA, Mlawer EJ, Iacono MJ (1998) Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts. ECMWF Technical Memo No. 252, p 47Google Scholar
  65. Morcrette J-J, Fouquart Y (1986) The overlapping of cloud layers in shortwave radiation parameterizations. J Atmos Sci 43:321–328CrossRefGoogle Scholar
  66. Murphy J, Sexton DH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768772CrossRefGoogle Scholar
  67. Nam CCW, Quaas J (2012) Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J Clim 25:4975–4992. doi: 10.1175/JCLI-D-11-00347.1 CrossRefGoogle Scholar
  68. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216CrossRefGoogle Scholar
  69. Nitta T (1975) Observational determination of cloud mass flux distributions. J Atmos Sci 32:73–91CrossRefGoogle Scholar
  70. Nordeng T-E (1994) Extended versions of the convection parametrization scheme at ECMWF and their impact upon the mean climate and transient activity of the model in the tropics. ECMWF Tech. Memo. No 206Google Scholar
  71. Ou SC, Liou K-N (1995) Ice microphysics and climatic temperature feedback. Atmos Res 35:127–138CrossRefGoogle Scholar
  72. Pincus R, Baker MB (1994) Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372:250252CrossRefGoogle Scholar
  73. Pincus R, Platnick S, Ackerman SA, Hemler RS, Hofmann RJP (2012) Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J Clim 25:4699–4720. doi: 10.1175/JCLI-D-11-00267.1 CrossRefGoogle Scholar
  74. Platnick S (2000) Vertical photon transport in cloud remote sensing problems. J Geophys Res 105:22919–22935. doi: 10.1029/2000JD900333 Google Scholar
  75. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473CrossRefGoogle Scholar
  76. Rauber RM, Tokay A (1991) An explanation for the existence of supercooled water at the top of cold clouds. J Atmos Sci 48:1005–1023CrossRefGoogle Scholar
  77. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2288CrossRefGoogle Scholar
  78. Ryan BF et al (2000) Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon Weather Rev 128:3218–3235CrossRefGoogle Scholar
  79. Sandu I, Stevens B, Pincus R (2010) On the transitions in marine boundary layer cloudiness. Atmos Chem Phys 10:2377–2391Google Scholar
  80. Sekiguchi M et al (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J Geophys Res 108, doi: 10.1029/2002JD003359
  81. Shonk JKP, Hogan RJ, Manner J (2012) Impact of improved representation of horizontal and vertical cloud structure in a climate model. Clim Dyn 38:2365–2376. doi: 10.1007/s00382-011-1174-2 CrossRefGoogle Scholar
  82. Siebesma AP, et al (2004) Cloud representation in general circulation models over the northern Pacific Ocean: AEUROCS intercomparison study. Q J R Meteorol Soc 130:3245–3267Google Scholar
  83. Siebesma AP, Pedro MM (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64:1230–1248. doi: 10.1175/JAS3888.1 CrossRefGoogle Scholar
  84. Simmons A, Uppala C, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter No. 110, pp 25–35Google Scholar
  85. Simpson J (1971) On cumulus entrainment and one-dimensional models. J Atmos Sci 28:449–455CrossRefGoogle Scholar
  86. Simpson J, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36CrossRefGoogle Scholar
  87. Slingo A (1990) Sensitivity of the Earths radiation budget to changes is low clouds. Nature 343:49–51. doi: 10.1038/343049a0 CrossRefGoogle Scholar
  88. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  89. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled atmosphere-ocean models. J Clim 19:3354–3360CrossRefGoogle Scholar
  90. Solomon S, et al (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. ISBN 0521705967Google Scholar
  91. Spencer RW, Braswell WD (1997) How dry is the tropical free troposphere? Implications for global warming theory. Bull Am Meteorol Soc 78:1097–1106CrossRefGoogle Scholar
  92. Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) 24.5-year SRB data set released. GEWEX News 21:10–12Google Scholar
  93. Stephens GL (1978) Radiation profiles in extended water clouds. II: parameterization schemes. J Atmos Sci 35:2123–2132. doi: 10.1175/1520-0469(1978)0352123:RPIEWC2.0.CO;2 CrossRefGoogle Scholar
  94. Stephens GL, Platt CMR (1987) Aircraft observations of the radiative and microphysical properties of stratocumulus and cumulus cloud fields. J Clim Appl Meteorol 26:1243–1269CrossRefGoogle Scholar
  95. Stevens B et al (2003) On entrainment in nocturnal marine stratocumulus. Q J R Meteorol Soc 129(595):3469–3492CrossRefGoogle Scholar
  96. Stevens B, Brenguier J-L (2009) Cloud-contolling factors: low clouds. In: Heintzenberg J, Charlson R (eds) Clouds in the perturbed climate system: their relationship to energy balance, atmospheric dynamics, and precipitation. pp 173–196Google Scholar
  97. Stocker TF, et al (2001) Physical climate processes and feedbacks. In: Houghton JT, et al (eds) Climate change 2001: the scientific basis, contributions of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  98. Stubenrauch CJ, Rossow WB, Kinne S, Ackerman S, Cesana G, Chepfer H, Di Girolamo L, Getzewich B, Guignard A, Heidinger A, Maddux BC, Menzel WP, Minnis P, Pearl C, Platnick S, Poulsen C, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S, Zhao G (2012) Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00117
  99. Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690CrossRefGoogle Scholar
  100. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  101. Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121:3040–3061CrossRefGoogle Scholar
  102. Valcke S (2006) OASIS3 user guide (prism 2–5). CERFACS technical report TR/CMGC/06/73, PRISM Report No 3, Toulouse, France. p 60Google Scholar
  103. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  104. Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362CrossRefGoogle Scholar
  105. Viterbo P, Beljaars ACM, Mahouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125:2401–2426CrossRefGoogle Scholar
  106. Wallace JM (1992) Effect of deep convection on the regulation of tropical sea surface temperature. Nature 357:230–231CrossRefGoogle Scholar
  107. Walther A, Heidinger A (2012) Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J Appl Meteorol Clim 51:1371–1390CrossRefGoogle Scholar
  108. Wang L, Wang Y, Lauer A, Xie S-P (2011) Simulation of seasonal variation of marine boundary layer clouds over the Eastern Pacific with a regional climate model. J Clim 24:3190–3210. doi: 10.1175/2010JCLI3935.1 CrossRefGoogle Scholar
  109. Webb MJ, et al (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38Google Scholar
  110. Webb M, Senior C, Bony S, Morcrette J-J (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECWMF and LMD atmospheric climate models. Clim Dyn 17:905–922CrossRefGoogle Scholar
  111. Wetherald RT, Manabe S (1988) Cloud feedback process in a general circulation model. J Atmos Sci 45:1397–1415CrossRefGoogle Scholar
  112. Williams KD, Ringer MA, Senior CA (2003) Evaluating the cloud response to climate change and current climate variability. Clim Dyn 20:705–721Google Scholar
  113. Williams KD, Ringer MA, Senior CA, Webb MJ, McAvaney BJ, Andronova N, Bony S, Dufresne J-L, Emori S, Gudgel R, Knutson T, Li B, Lo K, Musat I, Wegner J, Slingo A, Mitchell JFB (2006) Evaluation of a component of the cloud response to climate change in an intercomparison of climate models. Clim Dyn 26:145–165. doi: 10.1007/s00382-005-0067-7 CrossRefGoogle Scholar
  114. Wood R, Bretherton CS (2006) Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J Clim 19:1748–1764CrossRefGoogle Scholar
  115. Wyant MC et al (2010) The PreVOCA experiment: modeling the lower troposphere in the southeast Pacific. Atmos Chem Phys 10:4757–4774Google Scholar
  116. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, p 64. Woods Hole. MassachusettsGoogle Scholar
  117. Zhang GJ, Vogelmann AM, Jensen MP, Collins WD, Luke EP (2010) Relating satellite-observed cloud properties from MODIS to meteorological conditions for marine boundary layer clouds. J Clim 23:1374–1391. doi: 10.1175/2009JCLI2897.1 CrossRefGoogle Scholar
  118. Zhang Z, Platnick S (2011) An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J Geophys Res 116:D20215. doi: 10.1029/2011JD016216 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.KNMIRoyal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations