Climate Dynamics

, Volume 43, Issue 9–10, pp 2725–2745 | Cite as

Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias

  • Bidyut B. Goswami
  • Medha Deshpande
  • P. Mukhopadhyay
  • Subodh K. Saha
  • Suryachandra A. Rao
  • Raghu Murthugudde
  • B. N. Goswami
Article

Abstract

We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.

Keywords

GCM MISO Coupling Convective heating tendency 

Notes

Acknowledgments

The Indian Institute of Tropical Meteorology (Pune, India) is fully funded by the Ministry of Earth Sciences, Government of India, New Delhi. RM gratefully acknowledges partial support from NASA PO and JPL Grants on Bio-Physical Feedbacks, the ONR DYNAMO grant, and the MoES NMM grants.

References

  1. Abhik S, Halder M, Mukhopadhyay P, Jiang X, Goswami BN (2013) A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Clim Dyn 40:1611–1624. doi: 10.1007/s00382-012-1425-x CrossRefGoogle Scholar
  2. Benedict JJ, Maloney ED, Sobel AH, Frierson DM, Donner LJ (2013) Tropical intraseasonal variability in version 3 of the GFDL atmosphere model. J Clim 26:426–449. doi: 10.1175/JCLI-D-12-00103.1 CrossRefGoogle Scholar
  3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97:163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 CrossRefGoogle Scholar
  4. Carton JA, Chepurin G, Cao X (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–1995. Part II: results. J Phys Oceanogr 30:311–326. doi: 10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2 CrossRefGoogle Scholar
  5. Chaudhari HS, Pokhrel S, Saha SK, Dhakate A, Yadav RK, Salunke K, Mahapatra S, Sabeerali CT, Rao AS (2013) Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon. Int J Climatol 33:1057–1069. doi: 10.1002/joc.3489 CrossRefGoogle Scholar
  6. Chowdary JS, Chaudhari HS, Gnanaseelan C, Parekh A, Rao AS, Sreenivas P, Pokhrel S, Singh P (2013) Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system. Clim Dyn. doi: 10.1007/s00382-013-1826-5 Google Scholar
  7. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 CrossRefGoogle Scholar
  8. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res. doi: 10.1029/2002JD003296 Google Scholar
  9. Gentemann CL, Wentz FJ, Mears CA, Smith DK (2004) In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J Geophys Res Ocean. doi: 10.1029/2003JC002092 Google Scholar
  10. Goswami BN, Shukla J (1984) Quasi-periodic oscillations in a symmetric general circulation model. J Atmos Sci 41:20–37. doi: 10.1175/1520-0469(1984)041<0020:QPOIAS>2.0.CO;2 CrossRefGoogle Scholar
  11. Goswami BB, Mukhopadhyay P, Mahanta R, Goswami BN (2010) Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J Geophys Res 115:D12114. doi: 10.1029/2009JD012275 CrossRefGoogle Scholar
  12. Goswami BB, Mukhopadhyay P, Khairoutdinov M, Goswami BN (2013) Simulation of Indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: need to improve the embedded cloud resolving model. Clim Dyn 41:1497–1507. doi: 10.1007/s00382-012-1563-1 CrossRefGoogle Scholar
  13. Griffies SM, Harrison MJ,Pacanowski RC, Rosati A (2004) Technical guide to MOM4. GFDL Ocean group technical report no. 5 NOAA/Geophysical Fluid Dynamics Laboratory. Version prepared on September 18, 2003. www.gfdl.noaa.gov
  14. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50. doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 CrossRefGoogle Scholar
  15. Inness PM, Slingo JM, Woolnough SJ, Neale RB, Pope VD (2001) Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation. Clim Dyn 17:777–793. doi: 10.1007/s003820000148 CrossRefGoogle Scholar
  16. Ji M, Kumar A, Leetmaa A (1994) A multiseason climate forecast system at the national meteorological center. Bull Am Meteorol Soc 75:569–577. doi: 10.1175/1520-0477(1994)075<0569:AMCFSA>2.0.CO;2 CrossRefGoogle Scholar
  17. Ji M, Behringer DW, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: the coupled model. Mon Weather Rev 126:1022–1034. doi: 10.1175/1520-0493(1998)126<1022:AICMFE>2.0.CO;2 CrossRefGoogle Scholar
  18. Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039. doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2 CrossRefGoogle Scholar
  19. Jiang X, Waliser DE, Li J-L, Woods C (2011) Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Clim Dyn 36:2219–2232. doi: 10.1007/s00382-010-0853-8 CrossRefGoogle Scholar
  20. Jiang X, Yang S, Li Y, Kumar A, Liu X, Zuo Z, Jha B (2013) Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP climate forecast system version 2. J Clim 26:3708–3727. doi: 10.1175/JCLI-D-12-00437.1 CrossRefGoogle Scholar
  21. Joseph S, Sahai AK, Chattopadhyay R, Goswami BN (2011) Can El Niño-Southern Oscillation (ENSO) events modulate intraseasonal oscillations of Indian summer monsoon?. J Geophys Res 116:D20123. doi: 10.1029/2010JD015510 CrossRefGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  23. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  24. Kang I-S, Jin K, Wang B, Lau K-M, Shukla J, Krishnamurthy V, Schubert S, Wailser D, Stern W, Kitoh A, Meehl G, Kanamitsu G, Galin V, Satyan V, Park C-K, Liu Y (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395. doi: 10.1007/s00382-002-0245-9 CrossRefGoogle Scholar
  25. Kemball-Cook S, Wang B, Fu X (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 model: the impact of coupling with an ocean model. J Atmos Sci 59:1433–1453. doi: 10.1175/1520-0469(2002)059<1433:SOTIOI>2.0.CO;2 CrossRefGoogle Scholar
  26. Keshavamurty RN, Krishnakumar V, Kasture SV (1988) Northward propagation of the 30–50 day mode in the Indian monsoon region. Proc Indian Acad Sci Planet Sci 97:127–136Google Scholar
  27. Kim H-M, Kang I-S, Wang B, Lee J-Y (2008) Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere–ocean coupled models. Clim Dyn 30:485–496. doi: 10.1007/s00382-007-0292-3 CrossRefGoogle Scholar
  28. Kim H-M, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dyn 39:2957–2973. doi: 10.1007/s00382-012-1364-6 CrossRefGoogle Scholar
  29. Krishna Kumar K (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32:L08704. doi: 10.1029/2004GL021979 CrossRefGoogle Scholar
  30. Krishnan R, Kasture SV, Keshavamurty RN (1992) Northward movement of the 30–50 day mode in an axisymmetric global spectral model. Curr Sci 62:732–735Google Scholar
  31. Kug J-S, Kang I-S, Choi D-H (2008) Seasonal climate predictability with tier-one and tier-two prediction systems. Clim Dyn 31:403–416. doi: 10.1007/s00382-007-0264-7 CrossRefGoogle Scholar
  32. Lee Drbohlav H-K, Krishnamurthy V (2010) Spatial structure, forecast errors, and predictability of the south Asian monsoon in CFS monthly retrospective forecasts. J Clim 23:4750–4769. doi: 10.1175/2010JCLI2356.1 CrossRefGoogle Scholar
  33. Lee J-Y, Wang B, Kang I-S, Shukla J, Kumar A, Kug J-S, Schemm JKE, Luo J–J, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park C-K (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:267–283. doi: 10.1007/s00382-010-0857-4 CrossRefGoogle Scholar
  34. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  35. Lin J-L, Weickman KM, Kiladis GN, Mapes BE, Schubert SD, Suarez MJ, Bacmeister JT, Lee M-I (2008) Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Clim 21:4541–4567. doi: 10.1175/2008JCLI1816.1 CrossRefGoogle Scholar
  36. Ling J, Li CY, Zhou W, Jia XL, Zhang CD (2013) Effect of boundary layer latent heating on MJO simulations. Adv Atmos Sci 30:101–115. doi: 10.1007/s00376-012-2031-x CrossRefGoogle Scholar
  37. Mukhopadhyay P, Taraphdar S, Goswami BN, Krishnakumar K (2010) Indian summer monsoon precipitation climatology in a high-resolution regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast 25:369–387. doi: 10.1175/2009WAF2222320.1 CrossRefGoogle Scholar
  38. Oueslati B, Bellon G (2013) Convective entrainment and large-scale organization of tropical precipitation: sensitivity of the CNRM-CM5 hierarchy of models. J Clim 26:2931–2946. doi: 10.1175/JCLI-D-12-00314.1 CrossRefGoogle Scholar
  39. Pattanaik DR, Kumar A (2010) Prediction of summer monsoon rainfall over India using the NCEP climate forecast system. Clim Dyn 34:557–572. doi: 10.1007/s00382-009-0648-y CrossRefGoogle Scholar
  40. Pattnaik S, Abhilash S, De S, Sahai AK, Phani R, Goswami BN (2013) Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model over the Indian monsoon region from an extended range forecast perspective. Clim Dyn 41:341–365. doi: 10.1007/s00382-013-1662-7 CrossRefGoogle Scholar
  41. Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608. doi: 10.1007/s00382-012-1542-6 CrossRefGoogle Scholar
  42. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air–sea fluxes for the global tropical oceans-description and evaluation. Clim Dyn 38:1521–1543. doi: 10.1007/s00382-011-1115-0 CrossRefGoogle Scholar
  43. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ, Cronin MF, Pinsard F, Reddy KG (2013) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40:2049–2071. doi: 10.1007/s00382-012-1455-4 CrossRefGoogle Scholar
  44. Qi Y, Zhang R, Li T, Wen M (2008) Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys Res Lett. doi: 10.1029/2008GL034517 Google Scholar
  45. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  46. Rajeevan M, Kesarkar A, Thampi SB, Rao TN, Radhakrishna B, Rajasekhar M (2010) Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann Geophys 28:603–619. doi: 10.5194/angeo-28-603-2010 CrossRefGoogle Scholar
  47. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  48. Rogers RF, Black ML, Chen SS, Black RA (2007) An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: comparisons with observations. J Atmos Sci 64:1811–1834. doi: 10.1175/JAS3932.1 CrossRefGoogle Scholar
  49. Sabeerali CT, Rao AS, Ajayamohan RS, Murtugudde R (2012) On the relationship between Indian summer monsoon withdrawal and Indo-Pacific SST anomalies before and after 1976/1977 climate shift. Clim Dyn 39:841–859. doi: 10.1007/s00382-011-1269-9 CrossRefGoogle Scholar
  50. Sabeerali CT, Dandi AR, Dhakate A, Salunke K, Mahapatra S, Rao AS (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118:4401–4420. doi: 10.1002/jgrd.50403 CrossRefGoogle Scholar
  51. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi: 10.1175/JCLI3812.1 CrossRefGoogle Scholar
  52. Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool HVD, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1
  53. Saha S, Moorthi S, Wu X, Saha, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Peña Mendez M, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2013a) The NCEP climate forecast system version 2. J Clim. doi: 10.1175/JCLI-D-12-00823.1 Google Scholar
  54. Saha SK, Pokhrel S, Chaudhari H (2013b) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Clim Dyn 41:1801–1815. doi: 10.1007/s00382-012-1617-4 CrossRefGoogle Scholar
  55. Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao AS (2013c) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol. doi: 10.1002/joc.3791 Google Scholar
  56. Sela JG (1980) Spectral modeling at the national meteorological center. Mon Weather Rev 108:1279–1292. doi: 10.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2 CrossRefGoogle Scholar
  57. Sela JG (1982) NOAA technical report NWS 30: the NMC spectral model. http://docs.lib.noaa.gov/noaa_documents/NWS/TR_NWS/TR_NWS_30.pdf
  58. Sengupta D, Goswami BN, Senan R (2001) Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys Res Lett 28:4127–4130. doi: 10.1029/2001GL013587 CrossRefGoogle Scholar
  59. Sharmila S, Pillai SA, Joseph S, Roxy M, Krishna RPM, Chattopadhyay R, Abhilash S, Sahai AK, Goswami BN (2013) Role of ocean-atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Clim Dyn 41:1651–1669. doi: 10.1007/s00382-013-1854-1 CrossRefGoogle Scholar
  60. Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853. doi: 10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2 CrossRefGoogle Scholar
  61. Slingo JM, Annamalai H (2000) 1997: the El Niño of the century and the response of the Indian Summer Monsoon. Mon Weather Rev 128:1778–1797. doi: 10.1175/1520-0493(2000)128<1778:TENOOT>2.0.CO;2 CrossRefGoogle Scholar
  62. Slingo JM, Sperber KR, Boyle JS, Ceron J-P, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy J-F, Hack J, Harzallah A, Inness P, Kitoh A, Lau WK-M, McAvaney B, Madden R, Matthews A, Palmer TN, Parkas C-K, Randall D, Renno N (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357. doi: 10.1007/BF00231106 CrossRefGoogle Scholar
  63. Sperber KR, Annamalai H (2008) Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: systematic errors and caution on use of metrics. Clim Dyn 31:345–372. doi: 10.1007/s00382-008-0367-9 CrossRefGoogle Scholar
  64. Suhas E, Neena JM, Goswami BN (2013) An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification. Clim Dyn 40:2605–2616. doi: 10.1007/s00382-012-1462-5 CrossRefGoogle Scholar
  65. Tao W-K, Lang S, Olson WS, Meneghini R, Yang S, Simpson J, Kummerow C, Smith E, Halverson J (2001) Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J Appl Meteorol 40:957–982. doi: 10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2 CrossRefGoogle Scholar
  66. Vecchi GA, Harrison DE (2002) Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J Clim 15:1485–1493. doi: 10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2 CrossRefGoogle Scholar
  67. Waliser DE (2006) Intraseasonal variability. In: Wang B (ed) The Asian Monsoon, First. Springer Praxis books, pp 203–257Google Scholar
  68. Waliser DE, Jin K, Kang I-S, Stern WF, Schubert SD, Wu MLC, Lau K-M, Lee M-I, Krishnamurthy V, Kitoh A, Meehl GA, Galin VY, Satyan V, Mandke SK, Wu G, Liu Y, Park C-K (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21:423–446. doi: 10.1007/s00382-003-0337-1 CrossRefGoogle Scholar
  69. Wang B, Xu X (1997) Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J Clim 10:1071–1085. doi: 10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2 CrossRefGoogle Scholar
  70. Wang B, Kang I-S, Lee J-Y (2004) Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J Clim 17:803–818. doi: 10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2 CrossRefGoogle Scholar
  71. Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett. doi: 10.1029/2005GL022734 Google Scholar
  72. Wang B, Lee J-Y, Kang I-S, Shukla J, Kug J-S, Kumar A, Schemm J, Luo J–J, Yamagata T, Park C-K (2008) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30:605–619. doi: 10.1007/s00382-007-0310-5 CrossRefGoogle Scholar
  73. Webster PJ (1983) Mechanisms of monsoon low-frequency variability: surface hydrological effects. J Atmos Sci 40:2110–2124. doi: 10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2 CrossRefGoogle Scholar
  74. Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399. doi: 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2 CrossRefGoogle Scholar
  75. Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:864–878. doi: 10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2 CrossRefGoogle Scholar
  76. Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627. doi:http://dx.doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
  77. Yang S, Zhang Z, Kousky VE, Higgins RW, Yoo S-H, Liang J, Fan Y (2008) Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J Clim 21:3755–3775. doi: 10.1175/2008JCLI1961.1 CrossRefGoogle Scholar
  78. Yuan X, Wood EF, Luo L, Pan M (2011) A first look at climate forecast system version 2 (CFSv2) for hydrological seasonal prediction. Geophys Res Lett. doi: 10.1029/2011GL047792 Google Scholar
  79. Zhang C (2005) Madden-Julian Oscillation. Rev Geophys. doi: 10.1029/2004RG000158 Google Scholar
  80. Zhang GJ, Mu M (2005) Simulation of the Madden-Julian Oscillation in the NCAR CCM3 Using a revised Zhang-McFarlane convection parameterization scheme. J Clim 18:4046–4064. doi: 10.1175/JCLI3508.1 CrossRefGoogle Scholar
  81. Zhang C, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, Sperber KR, Wang W (2006) Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27:573–592. doi: 10.1007/s00382-006-0148-2 CrossRefGoogle Scholar
  82. Zhou L, Murtugudde R (2009) Ocean-atmosphere coupling on different spatiotemporal scales: a mechanism for intraseasonal instabilities. J Atmos Sci 66:1834–1844. doi: 10.1175/2008JAS2879.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bidyut B. Goswami
    • 1
  • Medha Deshpande
    • 1
  • P. Mukhopadhyay
    • 1
  • Subodh K. Saha
    • 1
  • Suryachandra A. Rao
    • 1
  • Raghu Murthugudde
    • 2
  • B. N. Goswami
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations