Advertisement

Climate Dynamics

, Volume 43, Issue 1–2, pp 407–420 | Cite as

A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data

  • K. N. UmaEmail author
  • Subrata Kumar Das
  • Siddarth Shankar Das
Article

Abstract

The Aura-MLS observations of eight years from 2004 to 2011 have been utilized to understand the hydration and the dehydration mechanism over the northern and the southern hemispheric monsoon (NH and SH) regions. The monsoon regions considered are the Asian Summer Monsoon, East Asian Summer Monsoon, Arizona Monsoon (AM), North African Monsoon, South American Monsoon and the Australian Monsoon. The annual cycle of water vapor as expected shows maxima over the NH during June–August and during December–February over the SH. The time taken by the air parcels over the NH monsoon regions is found to be different compared to that over the SH monsoon regions. The analysis shows the concentration of water vapor in the upper troposphere and the lower stratosphere (UTLS) has not changed over these eight years in both the hemispheres during their respective monsoon seasons. The present analysis show different processes viz., direct overshooting convection, horizontal advection, temperature and cirrus clouds in influencing the distribution of water vapor to the UTLS over these different monsoon regions. Analysis of the UTLS water vapor with temperature and ice water content shows that the AM is hydrating the stratosphere compared to all the other monsoon regions where the water vapor is getting dehydrated. Thus it is envisaged that the present results will have important implications in understanding the exchange processes across the tropopause over the different monsoon regions and its role in stratosphere chemistry.

Keywords

Stratospheric water vapor UTLS Monsoon Aura-MLS 

Notes

Acknowledgments

The Aura-MLS data are downloaded from the Goddard Earth Sciences Data and Information Services Centre, the ERA-Interim from the ECMWF and the gridded OLR from the NOAA‐CIRES. The authors are thankful to the Director, SPL/VSSC for his constant support. Finally, the author would like to thank the Editor and the two anonymous reviewers for their constructive comments and suggestions which improve the manuscript greatly.

References

  1. Adams DK, Comrie AC (1997) The North American Monsoon. Bull Amer Meteor Soc 78: 2197–2213Google Scholar
  2. Bannister RN, O’Neill A, Gregory AR, Nissen KM (2004) The role of the South-East Asian monsoon and other seasonal features in creating the ‘tape recorder’ signal in the unified model. Q J R Meteorol Soc 130:1531–1554. doi: 10.1256/qj.03.106 CrossRefGoogle Scholar
  3. Bolton D (1980) The computation of equivalent potential temperature. Mon Wea Rev 108:1046–1053CrossRefGoogle Scholar
  4. Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quar J R Met Soc 75:351–363CrossRefGoogle Scholar
  5. Das SS (2009) A new perspective on MST radar observations of stratospheric intrusions into troposphere associated with tropical cyclone. Geophys Res Lett 36:L15821. doi: 10.1029/2009GL039184 CrossRefGoogle Scholar
  6. Das SK, Chiang CW, Nee JB (2011) Influence of tropical easterly jet on upper tropical cirrus: an observational study from CALIPSO, Aura‐MLS, and NCEP/NCAR data. J Geophys Res 116. doi: 10.1029/2011JD015923D12204
  7. Davidson E, Bride Mc, McAvaney BJ (1983) The onset of Australian monsoon during winter MONEX: synoptic aspects. Mon Wea Rev 111:496–516CrossRefGoogle Scholar
  8. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Dessler AE, Kim H (1999) Determination of the amount of water vapour entering the stratosphere based on Halogen Occultation Experiment (HALOE) data. J Geophys Res 104:30605–30607CrossRefGoogle Scholar
  10. Devasthale A, Fueglistaler S (2010) A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos Chem Phys 10:4573–4582CrossRefGoogle Scholar
  11. Dvortsov VL, Solomon S (2001) Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J Geophys Res 106(D7):7505–7514. doi: 10.1029/2000JD900637 CrossRefGoogle Scholar
  12. Flury T, Wu DL, Read WG (2012) Correlation among cirrus ice content, water vapour and temperature in the TTL as observed by CALIPSO and Aura/MLS. Atmos Chem Phys 12:683–691CrossRefGoogle Scholar
  13. Froidevaux I, Livesey NJ, Read WG, Jiang YB, Jimenez C, Filipiak MJ et al (2006) Early validation analyses of atmospheric profiles from EOS MLS on the AURA satellite. IEEE Trans Geosci Remote Sens 44(5):1106–1121CrossRefGoogle Scholar
  14. Fu R, Hu Y, Wright JS, Jiang JH, Dickinson RE, Chen M et al (2006) Short circuit of water vapour and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci USA 103(15):5664–5669CrossRefGoogle Scholar
  15. Fueglistaler S, Bonnazzola M, Haynes PH, Peter T (2005) Stratospheric water vapour predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J Geophys Res 110:D08107. doi: 10.1029/2004JD005516 Google Scholar
  16. Fueglistaler S, Dessler A, Dunkerton T, Folkins I, Fu Q, Mote P (2009) Tropical tropopause layer. Rev Geophys 47:1004. doi: 10.1029/2008RG000267 CrossRefGoogle Scholar
  17. Fujinami H, Nomura S, Yasunari T (2005) Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA 1:49–52. doi: 10.2151/sola.2005-014 CrossRefGoogle Scholar
  18. Gettelman A, Salby ML, Sassi F (2002) The distribution and influence of convection in the tropical tropopause region. J Geophys Res 107(D10):4080. doi: 10.1029/2001JD001048 CrossRefGoogle Scholar
  19. Hastenrath S (2000) Interannual and longer term variability of upper-air circulation over the tropical Atlantic and west Africa in boreal summer. Int J Clim 20:1415–1430Google Scholar
  20. Hirose M, Nakamura K (2005) Spatial and diurnal variations of precipitation systems over Asia observed by the TRMM Precipitation Radar. J Geophys Res 110:D05106. doi: 10.1029/2004JD004815 Google Scholar
  21. Holton JR, Gettelman A (2001) Horizontal transport and dehydration in the stratosphere. Geophys Res Lett 28:2799–2802CrossRefGoogle Scholar
  22. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  23. James R, Bonazzola M, Legras B, Surbled K, Fueglistaler S (2008) Water vapour transport and dehydration above convective outflow during Asian monsoon. Geophys Res Lett 35. doi: 10.1029/2008GL035441L20810
  24. Lambert A, Read WG, Livesey NJ, Santee ML, Manney GL, Froidevaux L, Lambert D et al (2007) Validation of the Aura Microwave Limb Sounder stratospheric water vapour and nitrous oxide measurements. J Geophys Res 112(D24):D24S36. doi: 10.1029/2007JD008724 Google Scholar
  25. Lelieveld J, Brühl C, Jöckel P, Steil B, Crutzen PJ, Fischer H, Lelieveld J et al (2007) Stratospheric dryness: model simulations and satellite observations. Atmos Chem Phys 7:1313–1332CrossRefGoogle Scholar
  26. Liebmann B, Smith CA (1996) Description of a complete interpolated outgoing long wave radiation dataset. Bull Am Meteo Soc 77:1275–1277Google Scholar
  27. Liu C, Zipser E, Garrett T, Jiang JH, Su H (2007) How do the water vapour and carbon monoxide ‘‘tape recorders’’ start near the tropical tropopause? Geophys Res Lett 34. doi: 10.1029/2006GL029234
  28. Livesey NJ, Read WG, Froidevaux L, Lambert A, Manney GL, Pumphrey HC et al (2011) EOS MLS version V3.3 level 2 data quality and description document. Jet Propul. Lab., Pasadena, CA. http://mls.jpl.nasa.gov
  29. Mote PW, Rosenlof KH, McIntyre ME, Carr ES, Gille JC, Holton JR et al (1996) An atmospheric tape recorder. The imprint of tropical tropopause temperatures on stratospheric water vapour. J Geophys Res 101:3989–4006. doi: 10.1029/95JD03422 CrossRefGoogle Scholar
  30. Newell RE, Gould Stewart S (1981) A stratospheric fountain? J Atmos Sci 38:2789–2796CrossRefGoogle Scholar
  31. Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309. doi: 10.1029/2006JD008294 CrossRefGoogle Scholar
  32. Petersen WA, Rutledge SA (2001) Regional variability in tropical convection: observations from TRMM. J Clim 14:3566–3586CrossRefGoogle Scholar
  33. Randel WJ, Moyer E, Park M, Jensen E, Bernath P, Walker K, Boone C (2012) J Geophys Res 117. doi: 10.1029/2011JD016632
  34. Rao TN, Uma KN, Rao DN, Fukao S (2008) Understanding the transportation process of tropospheric air entering thestratosphere from direct vertical air motion measurements over Gadanki and Kototabang. Geophys Res Lett 35:L15805. doi: 10.1029/2008GL034220 CrossRefGoogle Scholar
  35. Read WG, Lambert A, Bacmeister J, Cofield RE, Christensen LE, Cuddy DT et al (2007) EOS Aura Microwave Limb Sounder upper tropospheric and lower stratospheric humidity validation. J Geophys Res 112:D24S35. doi: 10.1029/2007JD008752 Google Scholar
  36. Rosenlof KH, Chiou EW, Chu WP, Johnson DG, Kelly KK, Michelsen HA, Nedoluha GE, Remsberg EE, Toon GC, McCormick MP (2001) Stratospheric water vapour increases over the past half-century. Geophys Res Lett 28:1195–1198. doi: 10.1029/2000GL012502 CrossRefGoogle Scholar
  37. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapour and the dynamics of climate changes. Rev Geophys 48:RG3001. doi: 10.1029/2009RG000302 CrossRefGoogle Scholar
  38. Schwartz MJ et al (2008) Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J Geophys Res 113:D15S11. doi: 10.1029/2007JD008783 Google Scholar
  39. Shindell DT (2001) Climate and ozone response to increased stratospheric water vapour. Geophys Res Lett 28:1551–1554CrossRefGoogle Scholar
  40. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapour to decadal changes in the rate of global warming. Science 327:1219–1223. doi: 10.1126/science.1182488 CrossRefGoogle Scholar
  41. Tetens O (1930) Uber einige meteorologische Begriffe. Z. Geophys. 6:297–309Google Scholar
  42. Uma KN, Das SK, Das SS, Kumar KK (2013) Aura-MLS observations of water vapour entering the stratosphere over the Northern Bay of Bengal and East Equatorial Indian Ocean. Terr Atmos Ocea Sci 24(3):357–368. doi: 10.3319/TAO.2012.11.06.01(A) CrossRefGoogle Scholar
  43. Uyeda H, Yamada H, Horikomi J, Shirooka R, Shimizu S, Liu L, Ueno K, Fujii H, Koike T (2001) Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J Meteorol Soc Jpn 79(1B):463–474CrossRefGoogle Scholar
  44. Wang PK (2003) Moisture plumes above thunderstorm anvils and their contributions to cross tropopause transport of water vapour in midlatitudes. J Geophys Res 108:4194. doi: 10.1029/2002JD002581 CrossRefGoogle Scholar
  45. Wang T, Dessler AE (2012) Analysis of cirrus in the tropical tropopause layer from CALIPSO and MLS data: a water perspective. J Geophys Res 117:D04211. doi: 10.1029/2011JD016442 Google Scholar
  46. Waters JW, Froidevaux L, Jarnot RF, Pickett HM, Read WG, Siegel PH et al (2006) The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans Geosci Remote Sens 44:1075–1092. doi: 10.1109/TGRS.2006.873771 CrossRefGoogle Scholar
  47. Wright JS, Fu R, Fueglistaler S, Liu Y, Zhang Y (2011) The influence of summertime convection over South-East Asia on water vapour in the tropical stratosphere. J Geophys Res 116:D12302. doi: 10.1029/2010JD015416 CrossRefGoogle Scholar
  48. Yasunari T, Miwa T (2006) Convective cloud systems over the Tibetan Plateau and their impact on mesoscale disturbances in the Meiyu/Baiu frontal zone. J Meteorol Soc Jpn 84(4):783–803CrossRefGoogle Scholar
  49. Zeng X, Lu E (2004) Globally unified monsoon onset and retreat indices. J Clim 17:2241–2248CrossRefGoogle Scholar
  50. Zhou JY, Lau KM (1999) Does a monsoon climate exist over South America? J Clim 11:1020–1040CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. N. Uma
    • 1
    Email author
  • Subrata Kumar Das
    • 2
  • Siddarth Shankar Das
    • 1
  1. 1.Space Physics Laboratory, Vikram Sarabhai Space CentreISRO-Department of Space, Government of IndiaTrivandrumIndia
  2. 2.PM & A DivisionIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations