Climate Dynamics

, Volume 43, Issue 9–10, pp 2707–2724 | Cite as

La Niña diversity and Northwest Indian Ocean Rim teleconnections

  • Andrew Hoell
  • Chris Funk
  • Mathew Barlow


The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.


ENSO diversity La Niña Tropical warm pool Drought East Africa Central-Southwest Asia 



The authors would like to thank two anonymous reviewers whose comments and suggestions helped to improve the manuscript and Martin Hoerling for providing the GFS simulations. NCEP Reanalysis and ERSST data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at This research builds upon a multi-year research project carried out under a US Agency for International Development-funded Famine Early Warning Systems Network agreement with the US Geological Survey.


  1. Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the indian ocean SST on the northern hemisphere circulation during el nino. J Clim 20(13):3164–3189. doi: 10.1175/JCLI4156.1 CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El nino modoki and its possible teleconnection. J Geophys Res 112(C11):C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  3. Barlow M, Nigam S, Berbery EH (2001) ENSO, pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128. doi: 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2 CrossRefGoogle Scholar
  4. Barlow M, Cullen H, Lyon B (2002) Drought in central and southwest asia: La nia, the warm pool, and indian ocean precipitation. J Clim 15(7):697–700. doi: 10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2 CrossRefGoogle Scholar
  5. Barlow M, Wheeler M, Lyon B, Cullen H (2005) Modulation of daily precipitation over southwest asia by the MaddenJulian oscillation. Mon Weather Rev 133(12):3579–3594. doi: 10.1175/MWR3026.1 CrossRefGoogle Scholar
  6. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901present. Earth Syst Sci Data 5(1):71–99. doi: 10.5194/essd-5-71-2013 CrossRefGoogle Scholar
  7. Camberlin P, Okoola RE (2003) The onset and cessation of the “long rains" in eastern africa and their interannual variability. Theor Appl Climatol 75(1):43–54. doi: 10.1007/s00704-002-0721-51 Google Scholar
  8. Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between african rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21(8):973–1005. doi: 10.1002/joc.673 CrossRefGoogle Scholar
  9. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21(15):1845–1862. doi: 10.1002/joc.631 CrossRefGoogle Scholar
  10. Farmer G (1988) Seasonal forecasting of the kenya coast short rains, 190184. J Climatol 8(5):489–497. doi: 10.1002/joc.3370080505 CrossRefGoogle Scholar
  11. Hoell A, Funk C (2013) The ENSO-related west pacific sea surface temperature gradient. J Clim. doi: 10.1175/JCLI-D-12-00344.1
  12. Hoell A, Barlow M, Saini R (2012) The leading pattern of intraseasonal and interannual indian ocean precipitation variability and its relationship with asian circulation during the boreal cold season. J Clim 25(21):7509–7526. doi: 10.1175/JCLI-D-11-00572.1 CrossRefGoogle Scholar
  13. Hoell A, Funk C, Barlow M (2013) The regional forcing of northern hemisphere drought during recent warm tropical west pacific ocean la nina events. Clim Dyn. doi: 10.1007/s00382-013-1799-4
  14. Hoerling MP, Kumar A (1997) Why do north american climate anomalies differ from one el nino event to another? Geophys Res Lett 24(9):1059–1062. doi: 10.1029/97GL00918 CrossRefGoogle Scholar
  15. Hoerling MP, Kumar A (2002) Atmospheric response patterns associated with tropical forcing. J Clim 15(16):2184–2203. doi: 10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2 CrossRefGoogle Scholar
  16. Holton JR (2004) An introduction to dynamic meteorology. Elsevier, AmsterdamGoogle Scholar
  17. Indeje M, Semazzi FH, Ogallo LJ (2000) ENSO signals in east african rainfall seasons. Int J Climatol 20(1):19–46. doi: 10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0 CrossRefGoogle Scholar
  18. Johnson NC (2013) How many ENSO flavors can we distinguish?*. J Clim 26(13):4816–4827. doi: 10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  19. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  20. Kao HY, Yu JY (2009) Contrasting eastern-pacific and central-pacific types of ENSO. J Clim 22(3):615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  21. Kijazi AL, Reason CJC (2005) Relationships between intraseasonal rainfall variability of coastal tanzania and ENSO. Theor Appl Climatol 82(3):153–176. doi: 10.1007/s00704-005-0129-0 CrossRefGoogle Scholar
  22. Kug JS, Jin FF, An SI (2009) Two types of el nio events: Cold tongue el nio and warm pool el nio. J Clim 22(6):1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  23. Kumar A, Hoerling MP (1997) Interpretation and implications of the observed InterEl nino variability. J Clim 10(1):83–91. doi: 10.1175/1520-0442(1997)010<0083:IAIOTO>2.0.CO;2 CrossRefGoogle Scholar
  24. Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during la nia? Geophys Res Lett 37(12):L12702. doi: 10.1029/2010GL043394 Google Scholar
  25. Larkin NK, Harrison DE (2005) On the definition of el nino and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32(13):L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  26. Lau NC, Leetmaa A, Nath MJ (2006) Attribution of atmospheric variations in the 19972003 period to SST anomalies in the pacific and indian ocean basins. J Clim 19(15):3607–3628. doi: 10.1175/JCLI3813.1 CrossRefGoogle Scholar
  27. Lee EJ, Jhun JG, Kang IS (2002) The characteristic variability of boreal wintertime atmospheric circulation in el nino events. J Clim 15(8):892–904. doi: 10.1175/1520-0442(2002)015<0892:TCVOBW>2.0.CO;2 CrossRefGoogle Scholar
  28. Lee T, McPhaden MJ (2010) Increasing intensity of el nio in the central-equatorial pacific. Geophys Res Lett 37(14):L14603. doi: 10.1029/2010GL044007 Google Scholar
  29. Lyon B, Barnston A, DeWitt D (2013) Tropical pacific forcing of a 19981999 climate shift: observational analysis and climate model results for the boreal spring season. Clim Dyn 1–17. doi: 10.1007/s00382-013-1891-9
  30. Mariotti A (2007) How ENSO impacts precipitation in southwest central asia. Geophys Res Lett 34(16):L16706. doi: 10.1029/2007GL030078 Google Scholar
  31. Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the north atlantic european region during ENSO events. J Clim 17(10):1953–1974. doi: 10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2 CrossRefGoogle Scholar
  32. Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38(14):L14705. doi: 10.1029/2011GL047658 Google Scholar
  33. Nicholson SE (1996) A review of climate dynamics and climate variability in eastern africa. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African Lakes. Overseas Publishers Association, pp 25–56Google Scholar
  34. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the southern Oscillation/El nino. Mon Weather Rev 110(5):354–384. doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2 CrossRefGoogle Scholar
  35. Ratnam J, Behera S, Masumoto Y, Takahashi K, Yamagata T (2011) Anomalous climatic conditions associated with the el nino modoki during boreal winter of 2009. Clim Dyn 1–12. doi: 10.1007/s00382-011-1108-z
  36. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASAs modern–era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  37. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the el Nino/Southern oscillation. Mon Weather Rev 115(8):1606–1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 CrossRefGoogle Scholar
  38. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the southern oscillation. J Clim 2(3):268–284. doi: 10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2 CrossRefGoogle Scholar
  39. Shaman J, Tziperman E (2005) The effect of ENSO on tibetan plateau snow depth: a stationary wave teleconnection mechanism and implications for the south asian monsoons. J Clim 18(12):2067–2079. doi: 10.1175/JCLI3391.1 CrossRefGoogle Scholar
  40. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAAs historical merged LandOcean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  41. Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest asia part 1: observations. Theor Appl Climatol 86(1):147–160. doi: 10.1007/s00704-005-0217-1 CrossRefGoogle Scholar
  42. Trenberth KE, Guillemot CJ (1996) Physical processes involved in the 1988 drought and 1993 floods in north america. J Clim 9(6):1288–1298. doi: 10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2 CrossRefGoogle Scholar
  43. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  44. Wyrtki K (1975) El nino–the dynamic response of the equatorial pacific oceanto atmospheric forcing. J Phys Oceanogr 5(4):572–584. doi: 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2 CrossRefGoogle Scholar
  45. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central pacific el nio event on multi-centennial timescales. Geophysical Research Letters 38(2):L02704. doi: 10.1029/2010GL045886 Google Scholar
  46. Yeh SW, Ham YG, Lee JY (2012) Changes in the tropical pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO*. J Clim 5(21):7764–7771. doi: 10.1175/JCLI-D-12-00304.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2014

Authors and Affiliations

  1. 1.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Earth Resources Observation and Science CenterU.S. Geological SurveySioux FallsUSA
  3. 3.Department of Environmental, Earth and Atmospheric SciencesUniversity of Massachusetts LowellLowellUSA

Personalised recommendations