Climate Dynamics

, Volume 43, Issue 9–10, pp 2585–2605 | Cite as

Characterizing atmospheric circulation signals in Greenland ice cores: insights from a weather regime approach

  • Pablo Ortega
  • Didier Swingedouw
  • Valérie Masson-Delmotte
  • Camille Risi
  • Bo Vinther
  • Pascal Yiou
  • Robert Vautard
  • Kei Yoshimura
Article

Abstract

Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO− regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.

Keywords

North Atlantic weather regimes Modes of climate variability Greenland climate variability Isotope reanalyses Ice cores Water stable isotopes 

Supplementary material

382_2014_2074_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1816 kb)

References

  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Andersen KK, Ditlevsen PD, Rasmussen SO, Clausen HB, Vinther BM, Johnsen SJ, Steffensen JP (2006) Retrieving a common accumulation record from Greenland ice cores for the past 1800 years. J Geophys Res 111. doi:10.1029/2005JD006765
  3. Appenzeller C, Stocker T, Anklin M (1998) North Atlantic oscillation dynamics recorded in Greenland ice cores. Science 282:446CrossRefGoogle Scholar
  4. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584. doi:10.1126/science.1063315 CrossRefGoogle Scholar
  5. Barlow LK, White JWC, Barry RG, Rogers JC, Grootes PM (1993) The North Atlantic oscillation signature in deuterium and deuterium excess signals in the Greenland ice sheet project 2 ice core, 1840–1970. Geophys Res Lett 20:2901–2904CrossRefGoogle Scholar
  6. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  7. Box JE, Yang L, Bromwich DH, Bai L-S (2009) Greenland ice sheet surface air temperature variability: 1840–2007. J Clim 22:4029–4049. doi:10.1175/2009JCLI2816.1 CrossRefGoogle Scholar
  8. Bretherton C, Widmann M, Dymnikov V, Wallace J, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  9. Brönnimann S, Grant A, Compo G, Ewen T, Griesser T, Fischer AM, Schraner M, Stickler A (2012a) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598. doi:10.1007/s00382-012-1291-6 CrossRefGoogle Scholar
  10. Brönnimann S, Martius O, Von Waldow H, Welker C, Luterbacher J, Compo GP, Sardeshmukh PD, Usbeck T (2012b) Extreme winds at northern mid-latitudes since 1871. Meteorol Z 21:13–27. doi:10.1127/0941-2948/2012/0337 CrossRefGoogle Scholar
  11. Casado M, Ortega P, Masson-Delmotte V, Risi C, Swingedouw D, Daux V, Genty D, Maignan F, Solomina O, Vinther B, Viovy N, Yiou P (2013) Impact of precipitation intermittency on NAO-temperature signals in proxy records. Clim Past 9:871–886. doi:10.5194/cp-9-871-2013 CrossRefGoogle Scholar
  12. Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation. Nature 455:523–527. doi:10.1038/nature07286 CrossRefGoogle Scholar
  13. Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068CrossRefGoogle Scholar
  14. Cassou C, Terray L, Phillips A (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811CrossRefGoogle Scholar
  15. Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Clim 20:3510–3526. doi:10.1175/JCLI4202.1 CrossRefGoogle Scholar
  16. Cassou C, Minvielle M, Terray L, Périgaud C (2011) A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables. Clim Dyn 36:19–39. doi:10.1007/s00382-010-0781-7 CrossRefGoogle Scholar
  17. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37. doi:10.1029/2010gl044613
  18. Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2012) Towards a better understanding of changes in wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn 1–13. doi:10.1007/s00382-012-1436-7
  19. Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Ice core data evidence for a prominent near 20 year time scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704. doi:10.1029/2011GL047501 Google Scholar
  20. Chylek P, Folland CK, Frankcombe L, Dijkstra HA, Lesins G, Dubey MK (2012) Greenland ice core evidence for spatial and temporal variability of the Atlantic multidecadal oscillation. Geophys Res Lett 39:L09705. doi:10.1029/2012GL051241
  21. Clausen H, Gundestrup N, Johnsen S, Bindschadler R, Zwally J (1988) Glaciological investigations in the Crete area, central Greenland: a search for a new deep-drilling site. Ann Glaciol 10:10–15Google Scholar
  22. Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  23. Corti S, Molteni F, Palmer T (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802CrossRefGoogle Scholar
  24. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  25. Dansgaard W (1953) The abundance of 18O in atmospheric water and water vapour. Tellus 5:461–469CrossRefGoogle Scholar
  26. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  27. Dansgaard W, Johnsen SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU (1975) Climate changes, Norsemen and modern man. Nature 255:24–28CrossRefGoogle Scholar
  28. Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between Greenland blocking and the North Atlantic oscillation pattern. Geophys Res Lett 39:L14701. doi:10.1029/2012GL052315 Google Scholar
  29. Dawson A, Palmer TN, Corti S (2012) Simulating regime structures in weather and climate prediction models. Geophys Res Lett 39:L21805. doi:10.1029/2012GL053284 Google Scholar
  30. de Viron O, Dickey JO, Ghil M (2013) Global modes of climate variability. Geophys Res Lett. doi:10.1002/grl.50386 Google Scholar
  31. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  32. Ferguson CR, Villarini G (2012) Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J Geophys Res 117:D05123. doi:10.1029/2011JD016988 Google Scholar
  33. Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H (2013) Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7:241–248. doi:10.5194/tc-7-241-2013 CrossRefGoogle Scholar
  34. Fisher DA (1985) Stratigraphic noise in time series derives from ice cores. Ann Glaciol 7:76–83Google Scholar
  35. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  36. Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39:37–57. doi:10.1007/s00382-011-1109-y CrossRefGoogle Scholar
  37. Gates W (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  38. Grootes P, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10−3 to 105 year time resolution. J Geophys Res 102(26455–26426):26470Google Scholar
  39. Guemas V, Salas-Mélia D, Kageyama M, Giordani H, Voldoire A, Sanchez-Gomez E (2010) Summer interactions between weather regimes and surface ocean in the North-Atlantic region. Clim Dyn 34:527–546. doi:10.1007/s00382-008-0491-6 CrossRefGoogle Scholar
  40. Hakkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659. doi:10.1126/science.1205683 CrossRefGoogle Scholar
  41. Hanna E, McConnell J, Das S, Cappelen J, Stephens A (2006) Observed and modeled Greenland ice sheet snow accumulation, 1958–2003, and links with regional climate forcing. J Clim 19:344–358CrossRefGoogle Scholar
  42. Hanna E, Huybrechts P, Cappelen J, Steffen K, Bales RC, Burgess E, Mcconnell JR, Peder Steffensen J, Van Den Broeke M, Wake L, Bigg G, Griffiths M, Savas D (2011) Greenland ice sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. J Geophys Res 116:D24121. doi:10.1029/2011JD016387 Google Scholar
  43. Hanna E, Jones J, Cappelen J, Mernild S, Wood L, Steffen K, Huybrechts P (2013) The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int J Climatol 33:862–880. doi:10.1002/joc.3475 CrossRefGoogle Scholar
  44. Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28:100–108CrossRefGoogle Scholar
  45. Hourdin F, Foujols M-A, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi:10.1007/s00382-012-1411-3 CrossRefGoogle Scholar
  46. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  47. Ineson S, Scaife A, Knight JR, Manners J, Dunstone NJ, Gray L, Haigh J (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/ngeo1282 CrossRefGoogle Scholar
  48. Jouzel J, Alley RB, Cuffey KM, Dansgaard W, Grootes P, Hoffmann G, Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M, Stuiver M, White J (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res 102:26471–26487CrossRefGoogle Scholar
  49. Kaufman DS, Schneider DP, Mckay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Abbott M, Axford Y, Bird B, Birks HJB, Bjune AE, Briner J, Cook T, Chipman M, Francus P, Gajewski K, Geirsdottir A, Hu FS, Kutchko B, Lamoureux S, Loso M, Macdonald G, Peros M, Porinchu D, Schiff C, Seppa H, Thomas E (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239. doi:10.1126/science.1173983 CrossRefGoogle Scholar
  50. Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479:509–512. doi:10.1038/nature10581 CrossRefGoogle Scholar
  51. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:4. doi:10.1029/2005GL024233 Google Scholar
  52. Kobashi T, Shindell DT, Kodera K, Box JE, Nakaegawa T, Kawamura K (2013) On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. Clim Past 9:583–596. doi:10.5194/cp-9-583-2013 CrossRefGoogle Scholar
  53. Krinner G, Werner M (2003) Impact of precipitation seasonality changes on isotopic signals in polar ice cores: a multi-model analysis. Earth Planet Sci Lett 216:525–538CrossRefGoogle Scholar
  54. Krinner G, Genthon C, Jouzel J (1997) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828CrossRefGoogle Scholar
  55. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346. doi:10.1051/0004-6361:20066725 Google Scholar
  56. Latif M, Roeckner E, Botzet M, Esch M, Haak H (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the north Atlantic thermohaline circulation witch sea surface temperature. J Clim 17:1605–1613CrossRefGoogle Scholar
  57. Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic oscillation reconstruction. Quat Sci Rev 45:85–94. doi:10.1016/j.quascirev.2012.04.025 CrossRefGoogle Scholar
  58. Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M, Gladstone R, Hewitt C, Kitoh A, LeGrande A, Marti O, Merkel U, Motoi T, Ohgaito R, Otto-Bliesner B, Peltier W, Ross I, Valdes P, Vettoretti G, Weber S, Wolk F, Yu Y (2006) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim Dyn 26:513–529. doi:10.1007/s00382-005-0081-9 CrossRefGoogle Scholar
  59. Masson-Delmotte V, Braconnot P, Hoffmann G, Jouzel J, Kageyama M, Landais A, Lejeune Q, Risi C, Sime L, Sjolte J, Swingedouw D, Vinther B (2011) Sensitivity of interglacial Greenland temperature and delta O-18: ice core data, orbital and increased CO2 climate simulations. Clim Past 7:1041–1059. doi:10.5194/Cp-7-1041-2011 CrossRefGoogle Scholar
  60. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationnarity. J Atmos Sci 52:1237–1256CrossRefGoogle Scholar
  61. Mo K, Ghil M (1988) Cluster analysis of multiple planetary flow regimes. J Geophys Res Atmos 93:10927–10952. doi:10.1029/JD093iD09p10927 CrossRefGoogle Scholar
  62. NEEM Community Members (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–494. doi:10.1038/nature11789 CrossRefGoogle Scholar
  63. Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/NGEO955 CrossRefGoogle Scholar
  64. Persson A, Langen PL, Ditlevsen P, Vinther BM (2011) The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland. J Geophys Res 116:D20120. doi:10.1029/2010JD015517 CrossRefGoogle Scholar
  65. Rayner N, Parker D, Horton E, Folland CK, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  66. Reinhold B, Pierrehumbert R (1982) Dynamics of weather regimes—quasi-stationary waves and blocking. Mon Weather Rev 110:1105–1145CrossRefGoogle Scholar
  67. Rimbu N, Lohmann G (2010) Decadal variability in a central Greenland high-resolution deuterium isotope record and its relationship to the frequency of daily atmospheric circulation patterns from the North Atlantic region. J Climate 23:4608–4618. doi:10.1175/2010JCLI3556.1 CrossRefGoogle Scholar
  68. Rimbu N, Lohmann G (2011) Winter and summer blocking variability in the North Atlantic region—evidence from long-term observational and proxy data from southwestern Greenland. Clim Past 7:543–555. doi:10.5194/cp-7-543-2011 CrossRefGoogle Scholar
  69. Risi C, Bony S, Vimeux F, Jouzel J (2010) Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J Geophys Res 115:D12118. doi:10.1029/2009JD013255 CrossRefGoogle Scholar
  70. Risi C, Noone D, Worden J, Frankenberg C, Stiller G, Kiefer M, Funke B, Walker K, Bernath P, Schneider M, Wunch D, Sherlock V, Deutscher N, Griffith D, Wennberg PO, Strong K, Smale D, Mahieu E, Barthlott S, Hase F, García O, Notholt J, Warneke T, Toon G, Sayres D, Bony S, Lee J, Brown D, Uemura R, Sturm C (2012) Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J Geophys Res 117:D05303. doi:10.1029/2011JD016621 Google Scholar
  71. Schwager M (2000) Eisbohrkernuntersuchungen zur räumlichen und zeitlichen Variabilität von Temperatur und Niederschlagsrate im Spätholozän in Nordgrönland = Ice core analysis on the spatial and temporal variability of temperature and precipitation during the late Holocene in North Greenland, Berichte zur Polarforschung (Reports on Polar Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 362, 136 pGoogle Scholar
  72. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  73. Shindell D, Schmidt G, Miller R, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107CrossRefGoogle Scholar
  74. Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic oscillation variability on stable isotopes in precipitation. J Geophys Res 113:D12111. doi:10.1029/2007JD009416 CrossRefGoogle Scholar
  75. Sodemann H, Schwierz C, Wernli H (2008b) Interannual variability of Greenland winter precipitation sources: lagrangian moisture diagnostic and North Atlantic oscillation influence. J Geophys Res 113:D03107. doi:10.1029/2007JD008503 Google Scholar
  76. Steen-Larsen HC, Johnsen SJ, Masson-Delmotte V, Stenni B, Risi C, Sodemann H, Balslev-Clausen D, Blunier T, Dahl-Jensen D, Ellehøj MD, Falourd S, Grindsted A, Gkinis V, Jouzel J, Popp T, Sheldon S, Simonsen SB, Sjolte J, Steffensen JP, Sperlich P, Sveinbjörnsdóttir AE, Vinther BM, White JWC (2013a) Continuous monitoring of summer surface water vapor isotopic composition above the Greenland ice sheet. Atmos Chem Phys 13:4815–4828. doi:10.5194/acp-13-4815-2013 CrossRefGoogle Scholar
  77. Steen-Larsen HC, Masson-Delmotte V, Hirabayashi M, Winkler R, Satow K, Prie F, Bayou N, Brun E, Cuffey KM, Dahl-Jensen D, Dumont M, Guillevic M, Kipfstuhl J, Landais A, Popp T, Risi C, Steffen K, Stenni B, Sveinbjornsdóttir A (2013b) What controls the isotopic composition of Greenland surface snow? Clim Past Discuss 9:6035–6076. doi:10.5194/cpd-9-6035-2013 CrossRefGoogle Scholar
  78. Stuiver M, Grootes PM, Brazunias TF (1995) The GISP2 d18O climate record of the past 16,500 years and the role of the sun, ocean and volcano. Quat Res 44:341–354CrossRefGoogle Scholar
  79. Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J (2011) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36:1349–1364. doi:10.1007/s00382-010-0803-5 CrossRefGoogle Scholar
  80. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894 CrossRefGoogle Scholar
  81. Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23:276–299. doi:10.1016/0021-9991(77)90095-X CrossRefGoogle Scholar
  82. Vautard R (1990) Multiple weather regimes over the North Atlantic analysis of precursors and successors. Mon Weather Rev 118:2056–2081CrossRefGoogle Scholar
  83. Vinther BM, Andersen KK, Hansen AW, Schmith T, Jones PD (2003a) Improving the Gibraltar/Reykjavik NAO Index. Geophys Res Lett 30:2222CrossRefGoogle Scholar
  84. Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW (2003b) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30:1387CrossRefGoogle Scholar
  85. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006a) Extending Greenland temperature records into the late eighteenth century. J Geophys Res 111:D11105. doi:10.1029/2005JD006810 CrossRefGoogle Scholar
  86. Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen ML, Steffensen JP, Svensson A, Olsen J, Heinemeier J (2006b) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res Atmos 111:D13102. doi:10.1029/2005jd006921 CrossRefGoogle Scholar
  87. Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ, Fisher DA, Koerner RM, Raynaud D, Lipenkov V, Andersen KK, Blunier T, Rasmussen SO, Steffensen JP, Svensson AM (2010a) Holocene thinning of the Greenland ice sheet. Nature 461:385–388. doi:10.1038/nature08355 CrossRefGoogle Scholar
  88. Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010b) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29:522–538. doi:10.1016/j.quascirev.2009.11.002 CrossRefGoogle Scholar
  89. Wang Y-H, Magnusdottir G, Stern H, Tian X, Yu Y (2012) Decadal variability of the NAO: introducing an augmented NAO index. Geophys Res Lett 39:L21702. doi:10.1029/2012GL053413 Google Scholar
  90. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern-Hemisphere winter. Mon Wea Rev 109:784–812Google Scholar
  91. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868CrossRefGoogle Scholar
  92. Yiou P, Nogaj M (2004) Climatic extremes and weather regimes: where and when? Geophys Res Lett 31. doi:10.1029/2003GL019119
  93. Yiou P, Vautard R, Naveau P, Cassou C (2007) Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys Res Lett 34:L21808. doi:10.1029/2007GL031981 CrossRefGoogle Scholar
  94. Yiou P, Goubanova K, Li Z, Nogaj M (2008) Weather regime dependence of extreme value statistics for summer temperature and precipitation. Nonlinear Process Geophys 15:365–378CrossRefGoogle Scholar
  95. Yiou P, Servonnat J, Yoshimori M, Swingedouw D, Khodri M, Abe-Ouchi A (2012) Stability of weather regimes during the last millennium from climate simulations. Geophys Res Lett 39:L08703. doi:10.1029/2012GL051310 Google Scholar
  96. Yoshimura K, Kanamitsu M (2008) Dynamical global downscaling of global reanalysis. Mon Weather Rev 136:2983–2998. doi:10.1175/2008mwr2281.1 CrossRefGoogle Scholar
  97. Yoshimura K, Kanamitsu M (2013) Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon Weather Rev. doi:10.1175/mwr-d-12-00271.1 Google Scholar
  98. Yoshimura K, Kanamitsu M, Noone D, Oki T (2008) Historical isotope simulation using reanalysis atmospheric data. J Geophys Res 113:D19108. doi:10.1029/2008JD010074 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pablo Ortega
    • 1
  • Didier Swingedouw
    • 1
  • Valérie Masson-Delmotte
    • 1
  • Camille Risi
    • 2
  • Bo Vinther
    • 3
  • Pascal Yiou
    • 1
  • Robert Vautard
    • 1
  • Kei Yoshimura
    • 4
  1. 1.LSCE/IPSLCEA SaclayGif-sur-YvetteFrance
  2. 2.LMD/IPSLCNRSParisFrance
  3. 3.Centre for Ice and Climate, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  4. 4.Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwaJapan

Personalised recommendations