Climate Dynamics

, Volume 43, Issue 9–10, pp 2491–2518

Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation

Article

Abstract

Regional and seasonal temperature and precipitation over land are compared across two generations of global climate model ensembles, specifically, CMIP5 and CMIP3, through historical twentieth century skills and multi-model agreement, and twenty first century projections. A suite of diagnostic and performance metrics, ranging from spatial bias or model-consensus maps and aggregate time series plots, to measures of equivalence between probability density functions and Taylor diagrams, are used for the intercomparisons. Pairwise and multi-model ensemble comparisons were performed for 11 models, which were selected based on data availability and resolutions. Results suggest little change in the central tendency or variability or uncertainty of historical skills or consensus across the two generations of models. However, there are regions and seasons, at different levels of aggregation, where significant changes, performance improvements, and even degradation in skills, are suggested. The insights may provide directions for further improvements in next generations of climate models, and in the meantime, help inform adaptation and policy.

Keywords

CMIP5 models CMIP3 models Model evaluation Climate projections 

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Adler RF, Gu G, Huffman GJ (2012) Estimating climatological bias errors for the global precipitation climatology project (GPCP). J Appl Meteor Climatol 51:84–99CrossRefGoogle Scholar
  3. Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41:1039–1056Google Scholar
  4. Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Clim Dyn 41:803–817CrossRefGoogle Scholar
  5. Branstator G, Teng H (2012) Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophys Res Lett 39:L12703. doi:10.1029/2012GL051974 Google Scholar
  6. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548 CrossRefGoogle Scholar
  7. Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn 41:2889–2907Google Scholar
  8. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Chang 2:775–779CrossRefGoogle Scholar
  9. Dessai S, Lu X, Hulme M (2005) Limited sensitivity analysis of regional climate change probabilities for the twenty first century. J Geophy Res 110:D19108. doi:10.1029/2005JD005919 CrossRefGoogle Scholar
  10. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182CrossRefGoogle Scholar
  11. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972 Google Scholar
  12. Hulme M, Pielke R Jr, Dessai S (2009) Keeping prediction in perspective. Nat Rep Clim Chang. doi:10.1038/climate.2009.110 Google Scholar
  13. Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41:2921–2936CrossRefGoogle Scholar
  14. Kalnay EM et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  15. Kanamitsu M et al (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  16. Kao SC, Ganguly A (2011) Intensity, duration, frequency of precipitation extremes under twenty first century warming scenarios. J Geophy Res 116:D16119. doi:10.1029/2010JD015529 CrossRefGoogle Scholar
  17. Kharin VV, Zweris FW (2002) Climate predictions with multimodel ensembles. J Clim 15:793–799. doi:10.1175/1520-0442(2002 CrossRefGoogle Scholar
  18. Kharin VV, Zwiers FW, Zhang X, Hegrel GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444. doi:10.1175/JCLI4066.1 CrossRefGoogle Scholar
  19. Knutti R, Sedlacek J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373CrossRefGoogle Scholar
  20. Knutti R, Abramowitz G, Collins M et al (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, and P. M. Midgley (eds.)]. IPCC Working Group I Technical Support Unit, University of Bern, Bern, SwitzerlandGoogle Scholar
  21. Kodra E, Steinhaeuser K, Ganguly A (2011) Persisting cold extremes under twenty first century warming scanarios. Geophys Res Lett 38:L08705. doi:10.1029/2011GL047103 Google Scholar
  22. Kug J-S, Ham Y-G, Lee J-Y, Jin F–F (2012) Improved simulation of two types of El-Nino in CMIP5 models. Environ Res Lett 7:034002. doi:10.1088/1748-9326/7/3/034002 CrossRefGoogle Scholar
  23. Liu C, Allan RP, Huffman GJ (2012) Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys Res Lett 39:L13803. doi:10.1029/2012GL052093 Google Scholar
  24. Maslin M, Austin P (2012) Uncertainty: climate models at their limit? Nature 486:183–184CrossRefGoogle Scholar
  25. Meehl GA, Goddard L, Murphy J et al (2009) Decadal prediction: can it be skillful? Bull Am Meteor Soc 90:1467–1485. doi:10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  26. Monerie PA, Fontaine B, Roucou P (2012) Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J Geophys Res. doi:10.1029/2012JD017510 Google Scholar
  27. Moss R, Babiker M, Brinkman S et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response Strategies. Intergovernmental Panel on Climate Change. Geneva: 132 ppGoogle Scholar
  28. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  29. Perkins SE, Pitman AJ, Holbrook NJ, Mcaneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  30. Reichler T, Kim J (2008) How well do coupled models simulate today's climate? Bull Am Meteor Soc 89:303–311CrossRefGoogle Scholar
  31. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253. doi:10.1038/nclimate1385 CrossRefGoogle Scholar
  32. Rupp D, Abatzoglou J, Hegewisch K, Mote P (2013) Evaluation of CMIP5 twentieth century climate simulations for the Pacific Northwest USA. J Geophys Res 118:10884–10906. doi:10.1002/jgrd.50843 Google Scholar
  33. Sanderson BM, Knutti R (2012) On the interpretation of constrained climate model ensembles. Geophys Res Lett 39:L16708. doi:10.1029/2012GL052665 Google Scholar
  34. Santer BD, Taylor KE, Glecker PJ et al (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci 106:14778–14783. doi:10.1073/pnas.0901736106 CrossRefGoogle Scholar
  35. IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2007)Google Scholar
  36. Shukla J, Hagedorn R, Hoskins B et al (2009) Revolution in climate prediction is both necessary and possible: a declaration at the world modelling summit for climate prediction. Bull Am Meteor Soc 2:175–178. doi:10.1175/2008BAMS2759 CrossRefGoogle Scholar
  37. Sillmann J, Kharin VV, Zweris FW, Zhang X, Bronaugh D (2013a) Climate extreme indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1–18. doi:10.1002/jgrd.50203 CrossRefGoogle Scholar
  38. Sillmann J, Kharin VV, Zweris FW, Zhang X, Bronaugh D (2013b) Climate extreme indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188 CrossRefGoogle Scholar
  39. Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744Google Scholar
  40. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  41. Taylor KE, Stouffer RJ, Meehl GA (2011a) A summary of the CMIP5 experiment design. (Program for Climate Model Diagnosis and Intercomparison (PCMDI), 2011); available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf
  42. Taylor KE, Balaji V, Hankin S, Juckes M, Lawrence B, Pascoe S (2011b) CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies (Program for Climate Model Diagnosis and Intercomparison (PCMDI); available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf
  43. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  44. Tebaldi C, Knutti R (2007) The use of the multimodel ensemble in probabilistic climate projections. Philos Trans R Soc 365:2053–2075CrossRefGoogle Scholar
  45. Wilks, DS (2011) Statistical methods in the atmospheric sciences. Academic Press, 704 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Devashish Kumar
    • 1
  • Evan Kodra
    • 1
  • Auroop R. Ganguly
    • 1
  1. 1.Sustainability and Data Sciences Laboratory, Civil and Environmental EngineeringNortheastern UniversityBostonUSA

Personalised recommendations