Climate Dynamics

, Volume 43, Issue 9–10, pp 2471–2489 | Cite as

Thirty-two-year ocean–atmosphere coupled downscaling of global reanalysis over the Intra-American Seas

  • Haiqin Li
  • Vasubandhu Misra


This study examines the oceanic and atmospheric variability over the Intra-American Seas (IAS) from a 32-year integration of a 15-km coupled regional climate model consisting of the Regional Spectral Model (RSM) for the atmosphere and the Regional Ocean Modeling System (ROMS) for the ocean. It is forced at the lateral boundaries by National Centers for Environmental Prediction-Department of Energy (NCEP-DOE R-2) atmospheric global reanalysis and Simplified Ocean Data Assimilation global oceanic reanalysis. This coupled downscaling integration is a free run without any heat flux correction and is referred as the Regional Ocean–Atmosphere coupled downscaling of global Reanalysis over the Intra-American Seas (ROARS). The paper examines the fidelity of ROARS with respect to independent observations that are both satellite based and in situ. In order to provide a perspective on the fidelity of the ROARS simulation, we also compare it with the Climate Forecast System Reanalysis (CFSR), a modern global ocean–atmosphere reanalysis product. Our analysis reveals that ROARS exhibits reasonable climatology and interannual variability over the IAS region, with climatological SST errors less than 1 °C except along the coastlines. The anomaly correlation of the monthly SST and precipitation anomalies in ROARS are well over 0.5 over the Gulf of Mexico, Caribbean Sea, Western Atlantic and Eastern Pacific Oceans. A highlight of the ROARS simulation is its resolution of the loop current and the episodic eddy events off of it. This is rather poorly simulated in the CFSR. This is also reflected in the simulated, albeit, higher variance of the sea surface height in ROARS and the lack of any variability in the sea surface height of the CFSR over the IAS. However the anomaly correlations of the monthly heat content anomalies of ROARS are comparatively lower, especially over the Gulf of Mexico and the Caribbean Sea. This is a result of ROARS exhibiting a bias of underestimation (overestimation) of high (low) clouds. ROARS like CFSR is also able to capture the Caribbean Low Level Jet and its seasonal variability reasonably well.


Coupled downscaling Reanalysis Intra-American Seas Interannual variability 



This work was supported by grants from NOAA (NA12OAR4310078, NA10OAR4310215, NA11OAR4310110), and USDA (027865). Supercomputing was provided by TACC via XSEDE. Two anonymous reviewers helped to improve the manuscript.


  1. Alpert JC, Kanamitsu M, Caplan PM, Sela JG, White G, Kalnay E (1988) Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints, eighth conference on numerical weather prediction, Baltimore, MD. Amer Meteor Soc, pp 726–733Google Scholar
  2. Amador JA (2008) The Intra-Americas Sea Low Level Jet (IALLJ): overview and future research, trends, and directions in climate research. Ann N Y Acad Sci 1146:153–188CrossRefGoogle Scholar
  3. Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954CrossRefGoogle Scholar
  4. Bosart LF, Lin SC (1984) A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon Weather Rev 112:2148–2177CrossRefGoogle Scholar
  5. Bosilovich MG, Schubert SD (2002) Water vapor tracers as diagnostics of the regional hydrologic cycle. J Hydrom 3:149–165CrossRefGoogle Scholar
  6. Carton JA, Chepurin G, Cao X, Giese BS (2000) A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–1995, Part I: methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  7. Chan S, Misra V (2010) A diagnosis of the 1979–2005 extreme rainfall events in the southeastern United States with Isentropic Moisture Tracing. Mon Weather Rev 138:1172–1185CrossRefGoogle Scholar
  8. Chang Y-L, Oey L-Y (2010) Eddy and wind-forced heat transports in the Gulf of Mexico. J Phys Oceanogr 40:2728–2742CrossRefGoogle Scholar
  9. Chassignet EP, Hulburt HE, Smedstad OM, Barron CN, Ko DS, Rhodes RC, Shriver JF, Wallcraft AJ, Arnone AR (2005) Assessment of data assimilative ocean models in the Gulf of Mexico using Ocean Color. Circ Gulf Mex Obs Models 161:87–100Google Scholar
  10. Chérubin LM, Sturges W, Chassignet EP (2005) Deep flow variability in the vicinity of the Yucatan Straits from a high-resolution MICOM simulation. J Geophys Res 110:C04009. doi: 10.1029/2004JC002280 Google Scholar
  11. Chérubin LM, Morel Y, Chassignet EP (2006) Loop current ring shedding: the formation of cyclones and the effect of topography. J Phys Oceanogr 36:569–591CrossRefGoogle Scholar
  12. Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by water vapor and ozone. J Atmos Sci 53:1203–1208CrossRefGoogle Scholar
  13. Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Technical report series on global modeling and data assimilation, NASA/TM-1994-104606, 3, 85 ppGoogle Scholar
  14. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862CrossRefGoogle Scholar
  15. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale 437 Eta model. J Geophys Res 108:8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  16. Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311CrossRefGoogle Scholar
  17. Granger OE (1985) Caribbean climates. Prog Phys Geogr 9(1):16–43CrossRefGoogle Scholar
  18. Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281CrossRefGoogle Scholar
  19. Hastenrath S (1967) Rainfall distribution and regime in Central America. Arch Meteor Geophys Bioklimatol 15B:201–241CrossRefGoogle Scholar
  20. Hastenrath S (1976) Variations in low-latitude circulation and extreme climatic events in the tropical Americas. J Atmos Sci 33:20–215CrossRefGoogle Scholar
  21. Hastenrath S (1978) On the modes of tropical circulation and anomalies. J Atmos Sci 35:22220–22231CrossRefGoogle Scholar
  22. Hastenrath S (1984) Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Mon Weather Rev 112:1097–1107CrossRefGoogle Scholar
  23. Hastenrath S (2002) The intertropical convergence zone of the Eastern Pacific revisited. Int J Climatol 22:347–356CrossRefGoogle Scholar
  24. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339CrossRefGoogle Scholar
  25. Hurlburt HE, Thompson JD (1980) A numerical study of loop current intrusions and eddy shedding. J Phys Oceanogr 10:1611–1651CrossRefGoogle Scholar
  26. Hurrel JG, Meehl A, Bader D, Delworth TL, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Bull Am Meteorol Soc 90:1819–1832CrossRefGoogle Scholar
  27. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175CrossRefGoogle Scholar
  28. Juang HMH, Kanamitsu M (1994) The NMC nested regional spectral model. Mon Weather Rev 122:3–26CrossRefGoogle Scholar
  29. Juang HMH, Hong SY, Kanamitsu M (1997) The NCEP regional spectral model: an update. Bull Am Meteorol Soc 78:2125–2143CrossRefGoogle Scholar
  30. Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global reanalysis using a regional model. Mon Weather Rev 135:334–350CrossRefGoogle Scholar
  31. Kanamitsu M, Ebisuzaki W, Wollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis. Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  32. Kanamitsu M, Yoshimura K, Yhang Y, Hong S (2010) Errors of interannual variability and multi-decadal trend in dynamical regional climate downscaling and its corrections. J Geophys Res 115:D17115CrossRefGoogle Scholar
  33. Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090CrossRefGoogle Scholar
  34. Large WG, Yeager SG (2009) The global climatology of an internationally varying air–sea flux data set. Clim Dyn 33:341–364CrossRefGoogle Scholar
  35. Li H, Kanamitsu M, Hong SY (2012) California reanalysis downscaling at 10 km using an ocean–atmosphere coupled regional model system. J Geophys Res 117:D12118. doi: 10.1029/2011JD017372 Google Scholar
  36. Li H, Kanamitsu M, Hong SY, Yoshimura K, Cayan DR, Misra V (2013a) A high-resolution ocean–atmosphere coupled downscaling of a present climate over California. Clim Dyn. doi: 10.1007/s00382-013-1670-7 Google Scholar
  37. Li H, Kanamitsu M, Hong SY, Yoshimura K, Cayan DR, Misra V, Sun L (2013b) Projected climate change scenario over California by a regional ocean–atmosphere coupled model system. Clim Change. doi: 10.1007/s10584-013-1025-8 Google Scholar
  38. Liu Y, Lee S-K, Muhling BA, Lamkin JT, Enfield DB (2012) Significant reduction of the Loop Current in the 21st century and its impact on the Gulf of Mexico. J Geophys Res 117:C05039. doi: 10.1029/2011JC007555 Google Scholar
  39. Magana V, Amador JA, Medina S (1999) The mid-summer drought over Mexico and Central America. J Clim 12:1577–1588CrossRefGoogle Scholar
  40. Mestas-Nuñez AM, Enfield DB, Zhang C (2007) Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. J Clim 20:1910–1922CrossRefGoogle Scholar
  41. Misra V (2008a) Coupled interactions of the monsoons. Geophys Res Let L12705. doi: 10.1029/2008GL033562
  42. Misra V (2008b) Coupled air, sea, and land interactions of the South American monsoon. J Clim 21:6389–6403CrossRefGoogle Scholar
  43. Misra V, DiNapoli S (2012) The observed teleconnection between the equatorial Amazon and the Intra-Americas Seas. Clim Dyn. doi: 10.1007/s00382-012-1474-1 Google Scholar
  44. Misra V, DiNapoli S (2013) The variability of the Southeast Asian summer monsoon. Int J Climatol. doi: 10.1002/joc.3735 Google Scholar
  45. Misra V, Dirmeyer PA (2009) Air, sea, and land interactions of the continental US hyrdoclimate. J Hydromet 10:353–373Google Scholar
  46. Misra V, Chan S, Wu R, Chassignet E (2009) Air-sea interaction over the Atlantic warm pool in the NCEP CFS. Geophys Res Lett 36:L15702. doi: 10.1029/2009GL038525
  47. Mo K et al (2005) Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydromet 6:710–728CrossRefGoogle Scholar
  48. Mooers CNK, Maul G (1998) Intra-Americas sea circulation. The Sea. In: Robinson A, Brink KH (eds) The global coastal ocean, regional studies and syntheses, vol 11. Wiley, New York, pp 183–208Google Scholar
  49. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  50. Oey L-Y, Ezer T, Lee H-C (2005) Loop current, rings and related circulation in the Gulf of Mexico: an review of numerical models and future challenges. In: Sturges W, Lugo-Fernandez A (eds) Circulation in the Gulf of Mexico: observation and models. American Geophysical Union, Washington, DC, pp 31–56Google Scholar
  51. Orlanski I, Sheldon J (1995) Stages in the energetics of baroclinic systems. Tellus 47A:605–628CrossRefGoogle Scholar
  52. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89:459–470CrossRefGoogle Scholar
  53. Rasmusson EM (1967) Atmospheric water vapor transport and the water balance of North America: part I. Characteristics of the water vapor flux field. Mon Weather Rev 95:403–426CrossRefGoogle Scholar
  54. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  55. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuickSCAT scatterometer data. J Phys Oceanogr 38:2379–2413CrossRefGoogle Scholar
  56. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  57. Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International Satellite Cloud Climatology Project (ISCCP) Documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological Organization, 115 ppGoogle Scholar
  58. Ruiz-Barradas A, Nigam S (2005) Warm season rainfall variability over the U.S. great plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18:1808–1830CrossRefGoogle Scholar
  59. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  60. Shchepetkin AF, McWilliams JC (2005) The regional ocean modeling system: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model 9:347–404Google Scholar
  61. Shukla J, Palmer TN, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Slingo J (2010) Towards a new generation of world climate research and computing facilities. Bull Am Meteorol Soc 91:1407–1412CrossRefGoogle Scholar
  62. Slingo JM (1987) The development and verification of a cloud prediction model for the ECWMF model. Quart J Roy Meteorol Soc 113:899–927CrossRefGoogle Scholar
  63. Song YT, Haidvogel DB (1994) A semi-implicit ocean circulation model using a generalized topography following coordinate system. J Comput Phys 115:228–248CrossRefGoogle Scholar
  64. Sturges W, Lugo-Fernandez A (eds) (2005) Circulation in the Gulf of Mexico: observations and models. Geophys Mongr Ser 161:347, AGU, Washington DC. doi: 10.1029/GM161
  65. Tiedtke M (1983) The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. In: Proceedings of ECMWF workshop on convective in large-scale models, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, pp 297–316Google Scholar
  66. Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi: 10.1029/2005GL022734 CrossRefGoogle Scholar
  67. Wang C, Enfield DB, Lee SK, Landsea CW (2006) Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J Clim 19:3011–3028CrossRefGoogle Scholar
  68. Wu R, Kirtman BP, Pegion K (2006) Local air–sea relationship in observations and model simulations. J Clim 19:4914–4932CrossRefGoogle Scholar
  69. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  70. Xue Y, Huang B, Hu Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA
  2. 2.Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Florida Climate InstituteFlorida State UniversityTallahasseeUSA

Personalised recommendations