Climate Dynamics

, Volume 43, Issue 9–10, pp 2377–2397 | Cite as

Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean

  • B. Praveen Kumar
  • J. Vialard
  • M. Lengaigne
  • V. S. N. Murty
  • G. R. Foltz
  • M. J. McPhaden
  • S. Pous
  • C. de Boyer Montégut


Sea-surface temperature interannual anomalies (SSTAs) in the thermocline ridge of the southwestern tropical Indian Ocean (TRIO) have several well-documented climate impacts. In this paper, we explore the physical processes responsible for SSTA evolution in the TRIO region using a combination of observational estimates and model-derived surface layer heat budget analyses. Vertical oceanic processes contribute most to SSTA variance from December to June, while lateral advection dominates from July to November. Atmospheric fluxes generally damp SSTA generation in the TRIO region. As a result of the phase opposition between the seasonal cycle of vertical processes and lateral advection, there is no obvious peak in SSTA amplitude in boreal winter, as previously noted for heat content anomalies. Positive Indian Ocean Dipole (IOD) events and the remote influence of El Niño induce comparable warming over the TRIO region, though IOD signals peak earlier (November–December) than those associated with El Niño (around March–May). Mechanisms controlling the SSTA growth in the TRIO region induced by these two climate modes differ strongly. While SSTA growth for the IOD mostly results from southward advection of warmer water, increased surface shortwave flux dominates the El Niño SSTA growth. In both cases, vertical oceanic processes do not contribute strongly to the initial SSTA growth, but rather maintain the SSTA by opposing the effect of atmospheric negative feedbacks during the decaying phase.


Thermocline ridge of the Indian Ocean Surface temperature interannual variability ENSO IOD 



B. Praveen Kumar did this work while at CSIR-National Institute of Oceanography (CSIR-NIO, Goa, India), with a research grant from the Council of Scientific and Industrial Research (CSIR, Govt. of India). Institut de Recherche pour le Développement (IRD, France) provided him a “BEST” grant to support a one-year visit to Laboratoire d'Océanographie Expérimentation et Approches Numériques (LOCEAN, Paris). Jérôme Vialard and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Matthieu Lengaigne provided his contribution to this paper while visiting the CSIR-National Institute of Oceanography (CSIR-NIO) in Goa, India. Anne-Charlotte Peter ran the lower resolution global experiment that we used in this study. Model experiments were performed using HPC resources from GENCI-IDRIS (Grant 2010-011140). We thank the OSCAR project office for providing Oscar currents data and the National Oceanographic Data Center (NODC) from National Oceanic and Atmospheric Administration (NOAA) for providing the World Ocean Atlas dataset. TropFlux data is developed as a research collaboration between CSIR-National Institute of Oceanography (CSIR-NIO, India), ESSO-Indian National Centre for Ocean Information Services (ESSO-INCOIS) and Laboratoire d'Océanographie Expérimentation et Approches Numériques (LOCEAN, Paris), and downloaded from We thank three anonymous reviewers who provided constructive comments on an initial version of the manuscript, and the editor for a quick review process. This is INCOIS contribution number 163, and PMEL contribution number 4108.


  1. Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330CrossRefGoogle Scholar
  2. Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian monsoons. J Clim 18:4150–4167CrossRefGoogle Scholar
  3. Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the Northern Hemisphere during El Niño. J Clim 20:3164–3189CrossRefGoogle Scholar
  4. Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-006-0082-1 CrossRefGoogle Scholar
  5. Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954CrossRefGoogle Scholar
  6. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  7. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  8. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527CrossRefGoogle Scholar
  9. Currie J, Lengaigne M, Vialard J, Kaplan D, Aumont O, Maury O (2013) Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10:5841–5888CrossRefGoogle Scholar
  10. Cuypers Y, Le Vaillant X, Bouruet-Aubertot P, Vialard J, McPhaden MJ (2013) Tropical storm-induced near inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing. J Geophys Res 118:358–380Google Scholar
  11. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378 CrossRefGoogle Scholar
  12. De Boyer Montégut C, Vialard J, Shenoi SSC, Shankar D, Durand F, Ethé C, Madec G (2007) Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean. J Clim 20:3249–3268CrossRefGoogle Scholar
  13. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  14. Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038. doi:10.1175/2008JCLI2590.1 CrossRefGoogle Scholar
  15. Duvel JP (2012) New topics and advances, oceans and air-sea interaction. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, 2nd edn. Springer, New York, pp 513–530Google Scholar
  16. Duvel JP, Vialard J (2007) Indo-Pacific Sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J Clim 20:3056–3082CrossRefGoogle Scholar
  17. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization on air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591CrossRefGoogle Scholar
  18. Foltz GR, Vialard J, Praveen Kumar B, McPhaden MJ (2010) Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J Clim 23:947–965CrossRefGoogle Scholar
  19. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science 238:657–659CrossRefGoogle Scholar
  20. Halkides DJ, Lee T (2011) Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical Indian Ocean. Dyn Atmos Oceans 51:77–93CrossRefGoogle Scholar
  21. Harrison DE, Vecchi GA (2001) January 1999 Indian Ocean cooling event. Geophys Res Lett 28:3717–3720CrossRefGoogle Scholar
  22. Hermes JC, Reason CJC (2008) Annual cycle of the South Indian Ocean (Seychelles–Chagos) thermocline ridge in a regional ocean model. J Geophys Res 113:C04035. doi:10.1029/2007JC004363 Google Scholar
  23. Hong C–C, Lu M–M, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys Res 113:D08107. doi:10.1029/2007JD009151 Google Scholar
  24. Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Shneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20CrossRefGoogle Scholar
  25. Izumo T, de Boyer Montégut C, Luo J–J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623CrossRefGoogle Scholar
  26. Jayakumar A, Vialard J, Lengaigne M, Gnanaseelan C, McCreary JP, Praveen Kumar B (2011) Processes controlling the surface temperature signature of the Madden–Julian Oscillation in the thermocline ridge of the Indian Ocean. Clim Dyn. doi:10.1007/s00382-010-0953-5 Google Scholar
  27. Jerlov NG (1968) Optical oceanography. Elsevier Press, Amsterdam, p 194Google Scholar
  28. Jury M, Pathack B, Parker B (1999) Climatic determinants and statistical prediction of tropical cyclone days in the southwest Indian Ocean. J Clim 12:1738–1755CrossRefGoogle Scholar
  29. Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2013) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn 40:743–759CrossRefGoogle Scholar
  30. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  31. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR/TN-460 STR, 111 ppGoogle Scholar
  32. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309CrossRefGoogle Scholar
  33. Lengaigne M, Haussman U, Madec G, Menkes C, Vialard J (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046CrossRefGoogle Scholar
  34. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA atlas NESDIS 68. US. Government Printing Office, Washington, DC, p 184Google Scholar
  35. Lumpkin R, Garzoli SL (2005) Near-surface circulation in the Tropical Atlantic Ocean. Deep Sea Res I 52(3):495–518. doi:10.1016/j.dsr.2004.09.001 CrossRefGoogle Scholar
  36. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:3138–3158Google Scholar
  37. Madec G (2008) NEMO, the Ocean engine. Technical report, notes de l’IPSL (27), ISSN 1288 1619, Université P. et M. Curie, 193 ppGoogle Scholar
  38. Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602CrossRefGoogle Scholar
  39. McCreary JP Jr, Kundu PK, Molinari RL (1993) A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog Oceanogr 31:181–244CrossRefGoogle Scholar
  40. McPhaden MJ, Nagura M (2013) Indian ocean dipole interpreted in terms of recharge oscillator theory. Clim Dyn. doi:10.1007/s00382-013-1765-1
  41. McPhaden MJ, Ando K, Bourlès B, Freitag HP, Lumpkin R, Masumoto Y, Murty VSN, Nobre P, Ravichandran M, Vialard J, Vousden D, Yu W (2010) The global tropical moored buoy array. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” conference, vol 2. ESA Publication WPP-306, Venice, Italy. 21–25 September 2009Google Scholar
  42. Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J Clim 20:2872–2880CrossRefGoogle Scholar
  43. Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306CrossRefGoogle Scholar
  44. Nidheesh AG, Lengaigne M, Unnikrishnan AS, Vialard J (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific. Clim Dyn. doi:10.1007/s00382-012-1463-4 Google Scholar
  45. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation against observations. Clim Dyn 38:1521–1543CrossRefGoogle Scholar
  46. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ, Cronin M, Pinsard F, Gopala Reddy K (2013) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn. doi:10.1007/s00382-012-1455-4 Google Scholar
  47. Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmos Oceans 39:103–135CrossRefGoogle Scholar
  48. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  49. Saji NH, Xie S-P, Tam C-Y (2006) Satellite observations of intense intraseasonal cooling events in the tropical South Indian Ocean. Geophys Res Lett 33:L14704. doi:10.1029/2006GL026525 CrossRefGoogle Scholar
  50. Santoso A, Gupta AS, England MH (2010) Genesis of Indian Ocean mixed layer temperature anomalies: a heat budget analysis. J Clim 23:5375–5403CrossRefGoogle Scholar
  51. Schott F, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  52. Tozuka T, Yokoi T, Yamagata T (2010) A modeling study of interannual variations of the Seychelles Dome. J Geophys Res 115:C04005. doi:10.1029/2009JC005547 Google Scholar
  53. Treguier AM, Barnier B, de Miranda AP, Molines JM, Grima N, Lmbard M, Madec G, Messaager C, Teynaud T, Michel S (2001) An eddy permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophy Res 106. 10.1029/2000JC000376
  54. Trenary LL, Han W (2012) Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J Phys Oceanogr 32:602–627CrossRefGoogle Scholar
  55. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  56. Vecchi GA, Harrison DE (2004) Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean-atmosphere interaction. American geophysical union, geophysical monograph, vol 147. Washington, DC, pp 247–260Google Scholar
  57. Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part I : role of salinity in the physics of the western pacific fresh pool. J Phys Oceanogr 28:1071–1088CrossRefGoogle Scholar
  58. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  59. Vialard J, Foltz G, McPhaden M, Duvel J-P, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden–Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608. doi:10.1029/2008GL035238 CrossRefGoogle Scholar
  60. Vialard J, Duvel J-P, McPhaden M, Bouruet-Aubertot P, Ward B, Key E, Bourras D, Weller R, Minnett P, Weill A, Cassou C, Eymard L, Fristedt T, Basdevant C, Dandoneau Y, Duteil O, Izumo T, de Boyer Monte′gut C, Masson S, Marsac F, Menkes C, Kennan S (2009a) Cirene: air sea interactions in the Seychelles–Chagos thermocline ridge region. Bull Am Meteorol Soc 90:45–61CrossRefGoogle Scholar
  61. Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009b) Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden–Julian Oscillation. Geophys Res Lett 36:L14605. doi:10.1029/2008GL037010 CrossRefGoogle Scholar
  62. Vialard J, Drushka K, Bellenger H, Lengaigne M, Pous S, Duvel J-P (2013) Understanding Madden–Julian-induced sea surface temperature variations in the North Western Australian Basin. Clim Dyn. doi:10.1007/s00382-012-1541-7
  63. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356–360CrossRefGoogle Scholar
  64. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2007JD009316 Google Scholar
  65. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  66. Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian climate variability. J Clim 9:840–858CrossRefGoogle Scholar
  67. Xie S-P, Hu K, Hafner J, Du Y, Huang G, Tokinaga H (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Nino. J Clim 22:730–747CrossRefGoogle Scholar
  68. Yamagata T, Behera SK, Luo J–J, Masson S, Jury M, Rao SA (2004) Coupled ocean atmosphere variability in the tropical Indian Ocean, in earth climate: the ocean-atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Geophysical monograph series, vol 147. AGU, Washington, DC, pp 189–212Google Scholar
  69. Yokoi T, Tozuka T (2009) Seasonal variation of the Seychelles Dome simulated in the CMIP3 models. J Phys Oceanogr 39:449–457CrossRefGoogle Scholar
  70. Yokoi T, Tozuka T, Yamagata T (2008) Seasonal variation of the Seychelles Dome. J Clim 21:3740–3754CrossRefGoogle Scholar
  71. Yokoi T, Tozuka T, Yamagata T (2012) Seasonal and interannual variations of the SST above the Seychelles Dome. J Clim 25:800–814CrossRefGoogle Scholar
  72. Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi:10.1029/2005GL024327 CrossRefGoogle Scholar
  73. Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158 Google Scholar
  74. Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinments of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. Praveen Kumar
    • 1
  • J. Vialard
    • 2
  • M. Lengaigne
    • 2
  • V. S. N. Murty
    • 3
  • G. R. Foltz
    • 4
  • M. J. McPhaden
    • 5
  • S. Pous
    • 2
    • 6
  • C. de Boyer Montégut
    • 7
  1. 1.Indian National Centre for Ocean Information Services, Ministry of Earth SciencesGovt. of IndiaHyderabadIndia
  2. 2.Laboratoire d’Océanographie Expérimentation et Approches Numériques, CNRS, UPMC, IRD, MNHNParisFrance
  3. 3.CSIR-National Institute of Oceanography, Regional CentreVishakhapatnamIndia
  4. 4.Atlantic Oceanographic and Meteorological LaboratoryNOAAMiamiUSA
  5. 5.Pacific Marine Environmental LaboratoryNOAASeattleUSA
  6. 6.LMI ICEMASA, IRD, Department of OceanographyUniversity of Cape TownCape TownSouth Africa
  7. 7.IFREMER, Centre de Brest, Laboratoire d’Océanographie SpatialePlouzaneFrance

Personalised recommendations