Advertisement

Climate Dynamics

, Volume 43, Issue 9–10, pp 2349–2375 | Cite as

The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations

  • Alejandro Di Luca
  • Emmanouil Flaounas
  • Philippe Drobinski
  • Cindy Lebeaupin Brossier
Article

Abstract

The use of high resolution atmosphere–ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr−1) compared with observed estimations (~1,150 mm yr−1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (∼10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ∼70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (∼13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (∼35 % of the mean precipitation) is dominated by the choice of both cumulus (∼55 % of the total variance) and planetary boundary layer (∼32 % of the total variance) schemes with a strong regional dependence. Most members of the ensemble underestimate total precipitation amounts with biases as large as 250 mm yr−1 over the whole Mediterranean Sea compared with ERA Interim reanalysis mainly due to an underestimation of the number of wet days. The larger number of dry days in simulations is associated with a deficit in the activation of cumulus schemes. Both radiation and planetary boundary layer schemes influence precipitation through modifications on the available water vapor in the boundary layer generally tied with changes in evaporation.

Keywords

Regional climate model Evaporation Precipitation Parameterizations Cumulus Planetary boundary layer 

Abbreviations

ACM2

Version 2 of the asymmetrical convective model scheme

BMJ

Betts–Miller–Janjic scheme

CTL

Control

CU

Cumulus scheme

ERAI

ERA Interim reanalysis

G3D

Grell 3D ensemble scheme

HyMeX

Hydrological cycle in the Mediterranean experiment

KF

Kain–Fritsch scheme

MED-CORDEX

Mediterranean contribution to the Coordinated Regional climate Downscaling Experiment

MM5

Fifth-generation of the Mesoscale Model

MPE

Multi-physics ensemble

MSWB

Mediterranean Sea water budget

MT

Modified Tiedtke scheme

MYJ

Mellor–Yamada–Janjic scheme

MYNN

Mellor–Yamada–Nakanishi–Niino scheme

NEMO

Nucleus for European modelling of the ocean

NSAS

New Simplified Arakawa–Schubert

PBL

Planetary boundary layer scheme

RAD

Radiation scheme

RCM

Regional climate model

RRTM

Rapid radiative transfer Model scheme

RRTMG

Rapid radiative transfer model for application to GCMs scheme

SAS

Simplified Arakawa–Schubert scheme

SL

Surface layer scheme

SPBL

Surface and planetary boundary layer scheme

SST

Sea surface temperature

WRF

Weather research and forecasting

YSU

Yonsey University scheme

Notes

Acknowledgments

The research reported here was supported by the École Polytechnique, by the French National Research Agency (ANR) project REMEMBER (contract ANR-12-SENV-001) and by the IPSL group for regional climate and environmental studies. EF was supported by the IMPACT2C program (funded by the European Union Seventh Framework Programme, FP7/2007–2013 under the grant agreement 282746). The authors are indebted to K. Beranger and T. Arsouze for their useful collaboration. The authors also thank K. Ramage, J. Lenseigne and all the Climserv team from IPSL for maintaining a user-friendly local computing facility and stored the various datasets used in this study. This work is a contribution to the HyMeX program through INSU-MISTRALS support and the MED-CORDEX. This research The authors wish to thank the project groups at the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data Center, the European Centre for Medium-Range Weather Forecasts, the WHOI OAFlux project funded by the NOAA Climate Observations and Monitoring (COM) program and NASA Jet Propulsion Laboratory PO.DAAC for making their datasets readily available for this study.

References

  1. Adler R, Huffman G (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol (4):1147–1167Google Scholar
  2. Andersson A, Fennig K, Klepp C, Bakan S, Graß l H, Schulz J (2010) The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data HOAPS-3. Earth Syst Sci Data 2(2):215–234. doi: 10.5194/essd-2-215-2010 CrossRefGoogle Scholar
  3. Andersson A, Klepp C, Fennig K, Bakan S, Grassl H, Schulz J, Office M, Kingdom U, Wetterdienst D (2011) Evaluation of HOAPS-3 ocean surface freshwater flux components. J Appl Meteorol Climatol 50(2):379–398. doi: 10.1175/2010JAMC2341.1 CrossRefGoogle Scholar
  4. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos sci 31:674–701CrossRefGoogle Scholar
  5. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Díez Y (2011) Evaluation of WRF parameterizations for climate studies over southern spain using a multistep regionalization. J Clim 24(21):5633–5651. doi: 10.1175/JCLI-D-11-00073.1 CrossRefGoogle Scholar
  6. Artale V, Calmanti S, Carillo A, DellAquila A, Herrmann M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2009) An atmosphereocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35(5):721–740. doi: 10.1007/s00382-009-0691-8 CrossRefGoogle Scholar
  7. Béranger K, Drillet Y, Houssais MN, Testor P, Bourdallé-Badie R, Alhammoud B, Bozec A, Mortier L, Bouruet-Aubertot P, Crépon M (2010) Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea. J Geophys Res 115(C12):C12,041. doi: 10.1029/2009JC005648
  8. Betts A (1993) The Betts-Miller scheme. The representation of cumulus convection in numerical models. Meteor Monogr 46:107–121Google Scholar
  9. Charnock H (1958) A note on empirical wind-wave formulae. Q J R Meteorol Soc 84(362):443–447. doi: 10.1002/qj.49708436212 CrossRefGoogle Scholar
  10. Christensen J, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R, Kwon WT, Laprise R, Rueda V, Mearns L, Menendez C, Raisanen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis, chap 11. University Press, Cambridge, pp 847–940Google Scholar
  11. Crétat J, Pohl B, Richard Y, Drobinski P (2011) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38(3–4):613–634. doi: 10.1007/s00382-011-1055-8 Google Scholar
  12. Dee DP, Uppala SM, Simmons aJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda Ma, Balsamo G, Bauer P, Bechtold P, Beljaars aCM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer aJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kå llberg P, Köhler M, Matricardi M, McNally aP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  13. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro M, Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81(S1):53–70. doi: 10.1007/s10584-006-9228-x CrossRefGoogle Scholar
  14. Déqué M, Somot S, Sanchez-Gomez E, Goodess CM, Jacob D, Lenderink G, Christensen OB (2011) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38(5–6):951–964. doi: 10.1007/s00382-011-1053-x Google Scholar
  15. Di Luca A, de Elía R, Laprise R (2012a) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38(5–6):1229–1247. doi: 10.1007/s00382-011-1068-3 CrossRefGoogle Scholar
  16. Di Luca A, Elía R, Laprise R (2012b) Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Clim Dyn 40(1–2):443–464. doi: 10.1007/s00382-012-1384-2 Google Scholar
  17. Drobinski P, Béranger K, Ducrocq V (2009) The HyMeX (Hydrological cycle in the Mediterranean Experiment) program: the specific context of oceanography. MERCATOR Quat Newslett:1–39Google Scholar
  18. Drobinski P, Anav A, Lebeaupin Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, de Noblet-Ducoudré N, Diaz F, Dutay JC, Ethe C, Foujols MA, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Model of the regional coupled earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Model Softw 35:1–18. doi: 10.1016/j.envsoft.2012.01.017 CrossRefGoogle Scholar
  19. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year Multidisciplinary Program on the Mediterranean Water Cycle. Bull Amer Meteorol Soc. doi: 10.1175/BAMS-D-12-00242.1
  20. Dubois C, Somot S, Calmanti S, Carillo a, Déqué M, DellAquilla a, Elizalde a, Gualdi S, Jacob D, LHévéder B, Li L, Oddo P, Sannino G, Scoccimarro E, Sevault F (2011) Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphereocean regional climate models. Clim Dyn 39(7–8):1859–1884. doi: 10.1007/s00382-011-1261-4 Google Scholar
  21. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107CrossRefGoogle Scholar
  22. Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39(6):1241–1258. doi: 10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  23. Fairall C, Bradley E, Rogers D (1996) Bulk parameterization of air–sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101(C2):3747–3764CrossRefGoogle Scholar
  24. Fairall C, Bradley E, Hare J (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591CrossRefGoogle Scholar
  25. Fernández J, Montávez JP, Sáenz J, González-Rouco JF, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112(D4). doi: 10.1029/2005JD006649
  26. Flaounas E, Bastin S, Janicot S (2010) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36(5–6):1083–1105. doi: 10.1007/s00382-010-0785-3 Google Scholar
  27. Giorgi F, Christensen J, Hulme M, von Storch H, Whetton P, Jones R, Mearns L, Fu C, Arritt R, Bates B, Benestad R, Boer G, Buishand A, Castro M, Chen D, Cramer W, Crane R, Crossly J, Dehn M, Dethloff K, Dippner J, Emori S, Francisco R, Fyfe J, Gerstengarbe F, Gutowski W, Gyalistras D, Hanssen-Bauer I, Hantel M, Hassell D, Heimann D, Jack C, Jacobeit J, Kato H, Katz R, Kauker F, Knutson T, Lal M, Landsea C, Laprise R, Leung L, Lynch A, May W, McGregor J, Miller N, Murphy J, Ribalaygua J, Rinke A, Rummukainen M, Semazzi F, Walsh K, Werner P, Widmann M, Wilby R, Wild M, Xue Y (2001) Regional climate information-evaluation and projections. In: Houghton J (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 583–638Google Scholar
  28. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Org 58:175–183Google Scholar
  29. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121:764–787CrossRefGoogle Scholar
  30. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):1693. doi: 10.1029/2002GL015311 CrossRefGoogle Scholar
  31. Guenard V, Drobinski P, Caccia JL, Campistron B, Benech B (2005) An observational study of the mesoscale mistral dynamics. Boundary-Layer Meteorol 115:263–288CrossRefGoogle Scholar
  32. Han J, Pan HL (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea Forecast 26:520–533CrossRefGoogle Scholar
  33. Herrmann MJ, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophys Res Lett 35(4):1–18. doi: 10.1029/2007GL032442 CrossRefGoogle Scholar
  34. Hong S, Dudhia J, Chen S, Korea S, Division MM (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev 132:103–120CrossRefGoogle Scholar
  35. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341CrossRefGoogle Scholar
  36. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles–historical and real-time data. J Mar Syst 65:158–175CrossRefGoogle Scholar
  37. Janjic Z (1990) The step-mountain coordinate: physical package. Mon Wea Rev 118:1429–1443CrossRefGoogle Scholar
  38. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122:927–945CrossRefGoogle Scholar
  39. Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40:3023–3046. doi: 10.1007/s00382-012-1539-1 CrossRefGoogle Scholar
  40. Jin X, Weller RAR (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Technical Reports January, Woods Hole Oceanographic Institution, OAFlux Project Technical Report, Woods Hole. MassachusettsGoogle Scholar
  41. Kain J, Fritsch J (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802CrossRefGoogle Scholar
  42. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 1980:170–181Google Scholar
  43. Laprise R (2008) Regional climate modelling. J Comput Phys 227(7):3641–3666. doi: 10.1016/j.jcp.2006.10.024 CrossRefGoogle Scholar
  44. Lebeaupin Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean response to different spacetime resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36(1–2):1–25. doi: 10.1016/j.ocemod.2010.10.008 CrossRefGoogle Scholar
  45. Mariotti A, Struglia M, Zeng N, Lau K, Section C (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15(13):1674–1690 Google Scholar
  46. Mariotti A, Zeng N, Yoon JH, Artale V, Navarra A, Alpert P, Li LZX (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):44,001. doi: 10.1088/1748-9326/3/4/044001
  47. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875CrossRefGoogle Scholar
  48. Mlawer E, Taubman SJ, Brown PD, Iacono MJ, Shepard A (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663. doi: 10.1029/97JD00237 Google Scholar
  49. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz Inst Acad Nauk SSSR 24(151):163–187Google Scholar
  50. Mooney P, Mulligan F, Fealy R (2013) Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of europe over the period 1990–1995. J Clim 26:1002–1017. doi: 10.1175/JCLI-D-11-00676.1 CrossRefGoogle Scholar
  51. Nakanishi M, Niino H (2004) An improved MellorYamada level-3 model with condensation physics: its design and verification. Boundary-Layer Meteorol 112(1):1–31. doi: 10.1023/B:BOUN.0000020164.04146.98 CrossRefGoogle Scholar
  52. Omrani H, Drobinski P, Dubos T (2012a) Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model. Q J R Meteorol Soc 138(662):158–169. doi: 10.1002/qj.907 CrossRefGoogle Scholar
  53. Omrani H, Drobinski P, Dubos T (2012b) Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions. Clim Dyn 138(668):1808–1813. doi: 10.1007/s00382-012-1615-6 Google Scholar
  54. Peixoto J, Oort A (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  55. Peixoto JP, de Almeida M, Rosen R, Salstein D (1982) Atmospheric moisture transport and the water balance. Water Resourc Res 18(1):83–90CrossRefGoogle Scholar
  56. Pleim JE (2006) A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45(1):341–347CrossRefGoogle Scholar
  57. Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46(9):1383–1395. doi: 10.1175/JAM2534.1 CrossRefGoogle Scholar
  58. Rixen M (2005) The western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32(12):L12,608. doi: 10.1029/2005GL022702
  59. Romanou a, Tselioudis G, Zerefos CS, Clayson Ca, Curry Ja, Andersson a (2010) Evaporation precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23(19):5268–5287. doi: 10.1175/2010JCLI3525.1 CrossRefGoogle Scholar
  60. Ruiz JJ, Saulo C, Nogués-Paegle J (2010) WRF model sensitivity to choice of parameterization over South America: validation against surface variables. Mon Wea Rev 138(8):3342–3355. doi: 10.1175/2010MWR3358.1 CrossRefGoogle Scholar
  61. Ruti PM, Marullo S, D’Ortenzio F, Tremant M (2008) Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. J Mar Syst 70(1–2):33–48. doi: 10.1016/j.jmarsys.2007.02.026 CrossRefGoogle Scholar
  62. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136(646):170–182. doi: 10.1002/qj.518 CrossRefGoogle Scholar
  63. Sanchez-Gomez E, Somot S, Déqué M (2008) Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 19612000. Clim Dyn 33(5):723–736. doi: 10.1007/s00382-008-0502-7 CrossRefGoogle Scholar
  64. Sanchez-Gomez E, Somot S, Josey Sa, Dubois C, Elguindi N, Déqué M (2011) Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim Dyn 37(9–10):2067–2086. doi: 10.1007/s00382-011-1012-6 CrossRefGoogle Scholar
  65. Shi J, Tao WK, Matsui T, Cifelli R, Hou A, Lang S, Tokey A, Wang NY, Peters-Lidard C, Jackson G, Rutledge S, Petersen W (2010) WRF simulations of the 20–22 January 2007 snow events over Eastern Canada: comparison with in-situ and satellite observations. J Appl Meteorol Climatol 49:2246–2266CrossRefGoogle Scholar
  66. Shin HH, Hong SY (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139(2):261–281. doi: 10.1007/s10546-010-9583-z CrossRefGoogle Scholar
  67. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG, Mesoscale (2008) A description of the Advanced Res WRF Version 3. NCAR Technical Note, NCAR TN-475 June, p 113Google Scholar
  68. Smith S (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93(88):467–472Google Scholar
  69. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphereocean regional climate model. Global Planet Change 63(2–3):112–126. doi: 10.1016/j.gloplacha.2007.10.003 CrossRefGoogle Scholar
  70. Stull RB (1988) An introduction to boundary layer meteorology. Springer, NormanCrossRefGoogle Scholar
  71. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800CrossRefGoogle Scholar
  72. Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Wea Rev 130(3):549–569Google Scholar
  73. Uppala SM, Kllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly Ga, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  74. Wang Y, Leung LR, McGREGOR JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82(6):1599–1628. doi: 10.2151/jmsj.82.1599 CrossRefGoogle Scholar
  75. Zhang C, Wang Y, Hamilton K (2011) Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke Cumulus parameterization scheme. Mon Wea Rev 139(11):3489–3513. doi: 10.1175/MWR-D-10-05091.1 CrossRefGoogle Scholar
  76. Zhang D, Anthes RA (1982) A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21(11):1594–1609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro Di Luca
    • 1
    • 2
  • Emmanouil Flaounas
    • 1
  • Philippe Drobinski
    • 1
  • Cindy Lebeaupin Brossier
    • 3
  1. 1.Laboratoire de Météorologie Dynamique, Institute Pierre Simon LaplaceCNRS and École PolytechniquePalaiseau CedexFrance
  2. 2.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  3. 3.CNRM-GAME, UMR3589Météo-France and CNRSToulouseFrance

Personalised recommendations