Climate Dynamics

, Volume 43, Issue 9–10, pp 2313–2331

Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India

  • D. G. Kaskaoutis
  • E. E. Houssos
  • D. Goto
  • A. Bartzokas
  • P. T. Nastos
  • P. R. Sinha
  • S. K. Kharol
  • P. G. Kosmopoulos
  • R. P. Singh
  • T. Takemura
Article

Abstract

The present study focuses on identifying the main atmospheric circulation characteristics associated with aerosol episodes (AEs) over Kanpur, India during the period 2001–2010. In this respect, mean sea level pressure (MSLP) and geopotential height of 700 hPa (Z700) data obtained from the NCEP/NCAR Reanalysis Project were used along with daily Terra-MODIS AOD550 data. The analysis identifies 277 AEs [AOD500 > \( \overline{AOD} \)500 + 1STDEV (standard deviation)] over Kanpur corresponding to 13.2 % of the available AERONET dataset, which are seasonally distributed as 12.5, 9.1, 14.7 and 18.6 % for winter (Dec–Feb), pre-monsoon (Mar–May), monsoon (Jun–Sep) and post-monsoon (Oct–Nov), respectively. The post-monsoon and winter AEs are mostly related to anthropogenic emissions, in contrast to pre-monsoon and monsoon episodes when a significant component of dust is found. The multivariate statistical methods Factor and Cluster Analysis are applied on the dataset of the AEs days’ Z700 patterns over south Asia, to group them into discrete clusters. Six clusters are identified and for each of them the composite means for MSLP and Z700 as well as their anomalies from the mean 1981–2010 climatology are studied. Furthermore, the spatial distribution of Terra-MODIS AOD550 over Indian sub-continent is examined to identify aerosol hot-spot areas for each cluster, while the SPRINTARS model simulations reveal incapability in reproducing the large anthropogenic AOD, suggesting need of further improvement in model emission inventories. This work is the first performed over India aiming to analyze and group the atmospheric circulation patterns associated with AEs over Indo-Gangetic Plains and to explore the influence of meteorology on the accumulation of aerosols.

Keywords

Aerosol episodes Factor–cluster analysis Weather clusters Kanpur India 

References

  1. Abish B, Mohanakumar K (2011) Biennial Variability in aerosol optical depth associated with QBO modulated tropical tropopause. Atmos Sci Lett 13:61–66CrossRefGoogle Scholar
  2. Abish B, Mohankumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Plan Change 106:13–19CrossRefGoogle Scholar
  3. Aloysius M, Prijith SS, Mohan M, Parameswaran K (2011) Role of dynamics in the advection of aerosols over the Arabian Sea along the west coast of peninsular India during pre-monsoon season: a case study based on satellite data and Regional Climate Model. J Earth Syst Sci 120:269–279CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Sharma AR, Roy PS (2009) Fog Over Indo-Gangetic Plains—A Study Using Multisatellite Data and Ground Observations. IEEE J Sel Topics Appl Earth Observ Rem Sens 2:185–195CrossRefGoogle Scholar
  5. Bhawar RL, Devara PCS (2010) Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India. Atmos Chem Phys 10:29–37CrossRefGoogle Scholar
  6. Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33:1017–1032. doi:10.1007/s00382-008-0477-4 CrossRefGoogle Scholar
  7. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505CrossRefGoogle Scholar
  8. Carmona I, Alpert P (2009) Synoptic classification of moderate resolution imaging spectroradiometer aerosols over Israel. J Geophys Res 114:D072008. doi:10.1029/D010160 Google Scholar
  9. Chin M, Diehl T, Dubovik O, Eck TF, Holben BN, Sinyuk A, Streets DG (2009) Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann Geophys 27:3439–3464CrossRefGoogle Scholar
  10. Dey S, di Girolamo L (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000-2008) of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res 115:D15204. doi:10.1029/2009JD013395 CrossRefGoogle Scholar
  11. Dey S, di Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:L14811. doi:10.1029/2011GL048153 Google Scholar
  12. Dey S, Tripathi SN (2007) Estimation of aerosol optical properties and radiative effects in the Ganga Basin, northern India during the winter time. J Geophys Res 112:D03203. doi:10.1029/2006JD007267 Google Scholar
  13. Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001-2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029 Google Scholar
  14. di Girolamo L, Bond TC, Bramer D, Diner DJ, Fettinger F, Kahn RA, Martonchik JA, Ramana MV, Ramanathan V, Rasch PJ (2004) Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys Res Lett 31:L23115. doi:10.1029/2004GL021273 Google Scholar
  15. Diehl T, Heil A, Chin M, Pan X, Streets D, Schulz M, Kinne S (2012) Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos Chem Phys Discuss 12:24895–24954CrossRefGoogle Scholar
  16. Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res 105:9791–9806CrossRefGoogle Scholar
  17. Eck TF, Holben BN, Sinyuk A, Pinker RT, Goloub P, Chen H, Chatenet B, Li Z, Singh RP, Tripathi SN, Reid JS, Giles DM, Dubovik O, O’Neill NT, Smirnov A, Wang P, Xia X (2010) Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J Geophys Res 115:D19205. doi:10.1029/2010JD014002 CrossRefGoogle Scholar
  18. Eck TF, Holben BN, Reid JS, Giles DM, Rivas MA, Singh RP, Tripathi SN, Bruegge CJ, Platnick S, Arnold GT, Krotkov NA, Carn SA, Sinyuk A, Dubovik O, Arola A, Schafer JS, Artaxo P, Smirnov A, Chen H, Goloub P (2012) Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). J Geophys Res 117:D07206. doi:10.1029/2011JD016839 Google Scholar
  19. El-Askary H, Gautam R, Singh RP, Kafatos M (2006) Dust storms detection over the Indo-Gangetic basin using multi sensor data. Adv Space Res 37:728–733CrossRefGoogle Scholar
  20. Gadgil S, Vinayachandran PN, Francis PA (2003) Droughts of the Indian summer monsoon: role of clouds over the Indian Ocean. Curr Sci 85:1713–1719Google Scholar
  21. Ganguly D, Ginoux P, Ramaswamy V, Winker DM, Holben BN, Tripathi SN (2009) Retrieving the composition and concentration of aerosols over the Indo-Gangetic basin using CALIOP and AERONET data. Geophys Res Lett 36:L13806. doi:10.1029/2009GL038315 CrossRefGoogle Scholar
  22. Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res 117:D13209. doi:10.1029/2012JD017508 CrossRefGoogle Scholar
  23. Gautam R, Hsu NC, Kafatos M, Tsay S-C (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res 112:D05207. doi:10.1029/2005JD007036 Google Scholar
  24. Gautam R, Hsu NC, Lau K-M, Kafatos M (2009a) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 29:3691–3703CrossRefGoogle Scholar
  25. Gautam R, Hsu NC, Lau K-M, Kafatos M (2009b) Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys Res Lett 36:L07704. doi:10.1029/2009GL037641 Google Scholar
  26. Gautam R, Hsu NC, Lau K-M (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J Geophys Res 115:D17208. doi:10.1029/2010JD013819 CrossRefGoogle Scholar
  27. Gautam R, Hsu NC, Tsay SC, Lau K-M, Holben BN, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S, Aryal D, Kayastha R, Kim KM (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon Season. Atmos Chem Phys 11:12841–12863CrossRefGoogle Scholar
  28. Ghude SD, Kulkarni SH, Kulkarni PS, Kanawade VP, Fadnavis S, Pokhrel S, Jena C, Beig G, Bortoli D (2011) Anomalous low tropospheric column ozone over Eastern India during the severe drought event of monsoon 2002: a case study. Environ Sci Pollut Res 18:1442–1455CrossRefGoogle Scholar
  29. Giles DM, Holben BN, Tripathi SN, Eck T, Newcomb W, Slutsker I, Dickerson R, Thompson A, Mattoo S, Wang S, Singh R, Sinyuk A, Schafer J (2011) Aerosol Properties over the Indo-Gangetic Plain: a 1 Mesoscale Perspective from the TIGERZ Experiment. J Geophys Res 116:D18203. doi:10.1029/2011JD015809 CrossRefGoogle Scholar
  30. Gillette D (1978) A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed and soil consolidation on dust production. Atmos Environ 12:1735–1743CrossRefGoogle Scholar
  31. Gkikas A, Hatzianastassiou N, Mihalopoulos N (2009) Aerosol events in the broader 11 Mediterranean basin based on 7-year (2000–2007) MODIS C005 data Ann Geophys 27:3509–3522Google Scholar
  32. Gkikas A, Houssos EE, Hatzianastassiou N, Bartzokas A (2012) Synoptic conditions favouring the occurrence of aerosol episodes over the broader Mediterranean basin. Q J Royal Meteorol Soc 138:932–949CrossRefGoogle Scholar
  33. Goto D, Nakajima T, Takemura T, Sudo K (2011a) A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model. Atmos Chem Phys 11:10889–10910CrossRefGoogle Scholar
  34. Goto D, Takemura T, Nakajima T, Badarinath KVS (2011b) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmos Environ 45:3277–3285CrossRefGoogle Scholar
  35. Goto D, Badarinath KVS, Takemura T, Nakajima T (2011c) Simulation of aerosol optical properties over tropical urban site in India using a global model and its comparison with ground measurements. Ann Geophys 29:955–963CrossRefGoogle Scholar
  36. Guleria RP, Kuniyal JC, Rawat PS, Sharma NL, Thakur HK, Dhyani PP, Singh M (2011) The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing. Meteor Atmos Phys 113:153–169CrossRefGoogle Scholar
  37. Henriksson SV, Laaksonen A, Kerminen V-M, Räisänen P, Järvinen H, Sundström A-M, de Leeuw G (2011) Spatial distributions and seasonal cycles of aerosols in India and China seen in global climate-aerosol model. Atmos Chem Phys 11:7975–7990CrossRefGoogle Scholar
  38. Houssos EE, Bartzokas A (2006) Extreme precipitation events in NW Greece. Adv Geosci 7:91–96CrossRefGoogle Scholar
  39. Houssos EE, Lolis CJ, Gkikas A, Hatzianastassiou N, Bartzokas A (2011) On the atmospheric circulation characteristics associated with fog in Ioannina, north-western Greece. Int J Climatol 32:1847–1862CrossRefGoogle Scholar
  40. Huneeus N, Schulz M, Balkanski Y, Griesfeller J et al (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816CrossRefGoogle Scholar
  41. Jethva H, Satheesh SK, Srinivasan J (2007) Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Collection 004 (C004) aerosol retrievals at Kanpur, Indo-Gangetic Basin. J Geophys Res 112:D14216. doi:10.1029/2006JD007929 CrossRefGoogle Scholar
  42. Jolliffe IT (1986) Principal Component Analysis. Springer, New YorkCrossRefGoogle Scholar
  43. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Dennis J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470CrossRefGoogle Scholar
  44. Kar J, Deeter MN, Fishman J, Liu Z, Omar A, Creilson JK, Trepte CR, Vaughan MA, Winker DM (2010) Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmos Chem Phys 10:12273–12283CrossRefGoogle Scholar
  45. Kaskaoutis DG, Kumar Kharol S, Sinha PR, Singh RP, Badarinath KVS, Mehdi W, Sharma M (2011) Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmos Meas Tech Discuss 4:5275–5323CrossRefGoogle Scholar
  46. Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD (2012a) Characterizing the long-range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. Int J Climatol 32:1249–1270CrossRefGoogle Scholar
  47. Kaskaoutis DG, Singh RP, Gautam R, Sharma M, Kosmopoulos PG, Tripathi SN (2012b) Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environ Res Lett 7:024003CrossRefGoogle Scholar
  48. Kaskaoutis DG, Gautam R, Singh RP, Houssos EE, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu NC, Holben BN, Takemura T (2012c) Influence of anomalous dry conditions on aerosols over India: transport, distribution and properties. J Geophys Res 117:D09106. doi:10.1029/2011JD017314 Google Scholar
  49. Kaufman YJ, Tanrè D (1998) Algorithm for remote sensing of tropospheric aerosol from MODIS, algorithm theoretical basis documents (ATBD-MOD-02), 85Google Scholar
  50. Kharol SK, Badarinath KVS, Kaskaoutis DG, Sharma AR, Gharai B (2011) Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: results from W-ICARB cruise experiment. Ann Geophys 29:1423–1438CrossRefGoogle Scholar
  51. Kharol SK, Badarinath KVS, Sharma AR, Mahalakshmi DV, Singh D, Krishna Prasad V (2012) Black carbon aerosol variations over Patiala city, Punjab, India - A study during agriculture crop residue burning period using ground measurements and satellite data. J Atmos Solar-Terr Phys 84–85:45–51CrossRefGoogle Scholar
  52. Kinne S, Schulz M, Textor C, Guibert S et al (2006) An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834CrossRefGoogle Scholar
  53. Kishcha P, Starobinets B, Kalashnikova O, Alpert P (2011) Aerosol optical thickness trends and population growth in the Indian subcontinent. Int J Rem Sens 32:9137–9149. doi:10.1080/01431161.2010.550333 CrossRefGoogle Scholar
  54. Kishcha P, Starobinets B, Long CN, Alpert P (2012) Unexpected increasing AOT trends over north-west Bay of Bengal in the early post-monsoon season. J Geophys Res. doi:10.1029/2012JD018726
  55. Komppula M, Mielonen T, Arola A, Korhonen K, Lihavainen H, Hyvärinen A-P, Baars H, Engelmann R, Althausen D, Ansmann A, Müller D, Panwar TS, Hooda RK, Sharma VP, Kerminen V-M, Lehtinen KEJ, Viisanen Y (2012) One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India: seasonal characteristics of the aerosol vertical structure. Atmos Chem Phys 12:4513–4524CrossRefGoogle Scholar
  56. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2012) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn. doi:10.1007/s00382-012-1317-0
  57. Kuhlmann J, Quaas J (2010) How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos Chem Phys 10:4673–4688CrossRefGoogle Scholar
  58. K-1 Model Developers (2004) K-1 coupled GCM (MIROC) description, K-1 Technical Report 1. Hasumi H, Emori S, (eds), University of Tokyo, Tokyo, 34 ppGoogle Scholar
  59. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864CrossRefGoogle Scholar
  60. Lau KM, Kim MK, Kim KM, Lee WS (2010) Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett 5. doi:10.1088/1748-9326/5/2/025204
  61. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096CrossRefGoogle Scholar
  62. Levy RC, Remer LA, Mattoo S, Vermote E, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res 112:D13211. doi:10.1029/2006JD007811 Google Scholar
  63. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land Atmos. Chem Phys 10:10399–10420. doi:10.5194/acp-10-10399-2010 Google Scholar
  64. Lodhi NK, Beegum SN, Singh S, Kumar K (2013) Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths. J Geophys Res 118: doi:10.1002/jgrd.50165
  65. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864CrossRefGoogle Scholar
  66. Manly BFJ (1986) Multivariate Statistical Methods: A primer. Chapman & Hall, LondonGoogle Scholar
  67. Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198CrossRefGoogle Scholar
  68. Mishra AK, Shibata T (2012) Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atmos Environ 57:205–218CrossRefGoogle Scholar
  69. Misra AS, Tripathi SN, Kaul D, Welton E (2012) Study of MPLNET derived aerosol climatology over Kanpur, India, and validation of CALIPSO Level 2 Version 3 Backscatter and Extinction products. J Atmos Ocean Technol 29:1285–1294. doi:10.1175/JTECH-D-11-00162.1 CrossRefGoogle Scholar
  70. Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan E, Niocaill GM, Reidel D (eds) Oceanic whitecaps. Norwell, Mass., USA, pp 167–174Google Scholar
  71. Nakajima T, Tsukamoto M, Tsushima Y, Numaguti A, Kimura T (2000) Modeling of the radiative process in an atmospheric general circulation model. Appl Opt 39:4869–4878CrossRefGoogle Scholar
  72. Nastos PT (2012) Meteorological patterns associated with intense Saharan dust outbreaks over Greece in winter. Adv Meteor ID 828301. doi:10.1155/2012/828301
  73. Pathak B, Bhuyan PK, Biswas J, Takemura T (2013) Long term climatology of particulate matter and associated microphysical and optical properties over Dibrugarh, North-East India and inter-comparison with SPRINTARS simulations. Atmos Environ 69:334–344CrossRefGoogle Scholar
  74. Prasad AK, Singh RP (2007a) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res 112:D09208. doi:10.1029/2006JD007778 Google Scholar
  75. Prasad AK, Singh RP (2007b) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Rem Sens Environ 107:109–119CrossRefGoogle Scholar
  76. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102:5326–5333. doi:10.1073/pnas.0500656102 CrossRefGoogle Scholar
  77. Reddy MS, Venkataraman C (2002) Inventory of aerosol and sulphur dioxide emission from India: II-biomass combustion. Atmos Environ 36:699–712Google Scholar
  78. Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben BN (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113: D14S07. doi:10.1029/2007JD009661
  79. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116CrossRefGoogle Scholar
  80. Sekiguchi M, Nakajima T (2008) A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J Q Spectrosc Radiat Transf 109:2779–2793CrossRefGoogle Scholar
  81. Sharma S (1996) Applied Multivariate Techniques. John Wiley, New YorkGoogle Scholar
  82. Sharma AR, Kharol SK, Badarinath KVS, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28:367–379CrossRefGoogle Scholar
  83. Sharma D, Singh M, Singh D (2012) Impact of post-harvest biomass burning on aerosol characteristics and radiative forcing over Patiala, North–West region of India. J Instit Eng 8:11–24Google Scholar
  84. Shi Y, Zhang J, Reid JS, Hyer EJ, Eck TF, Holben BN, Kahn RA (2011) A critical examination of spatial biases between MODIS and MISR aerosol products—application for potential AERONET deployment. Atmos Meas Tech 4:2823–2836CrossRefGoogle Scholar
  85. Singh RP, Dey S, Tripathi SN, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966 CrossRefGoogle Scholar
  86. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and quality control algorithms for the AERONET data base. Rem Sens Environ 73:337–349CrossRefGoogle Scholar
  87. Srivastava R, Ramachandran S (2012) The mixing state of aerosols over the Indo-Gangetic Plain and its impact on radiative forcing. Q J Royal Meteorol Soc. doi:10.1002/qj.1958
  88. Srivastava AK, Tiwari S, Devara PCS, Bisht DS, Srivastava MK, Tripathi SN, Goloub P, Holben BN (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann Geophys 29:789–804CrossRefGoogle Scholar
  89. Srivastava AK, Singh S, Tiwari S, Bisht DS (2012a) Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. Environ Sci Pollut Res 19:1144–1158CrossRefGoogle Scholar
  90. Srivastava AK, Tripathi SN, Dey S, Kanawade VP, Tiwari S (2012b) Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements. Atmos Res 109:64–75CrossRefGoogle Scholar
  91. Srivastava AK, Singh S, Tiwari S, Kanawade VP, Bisht DS (2012c) Variation between near-surface and columnar aerosol characteristics during the winter and summer at Delhi in the Indo-Gangetic Basin. J Atmos Sol-Terr Phys 77:57–66CrossRefGoogle Scholar
  92. Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809. doi:10.1029/2002JD003093 CrossRefGoogle Scholar
  93. Sugar CA, James GM (2003) Finding the number of clusters in a dataset: an information-theoretic approach. J Am Stat Assoc 98:750–763CrossRefGoogle Scholar
  94. Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A, Nakajima T (2000) Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res 105:17853–17873CrossRefGoogle Scholar
  95. Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport radiation model. J Geophys Res 110:D02202. doi:10.1029/2004JD005029 Google Scholar
  96. Takemura T, Egashira M, Matsuzawa K, Ichijo H, O’ishi R, Abe-Ouchi A (2009) A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos Chem Phys 9:3061–3073CrossRefGoogle Scholar
  97. Tripathi SN, Dey S, Chandel A, Srivastva S, Singh RP, Holben B (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga basin, India. Ann Geophys 23:1093–1101CrossRefGoogle Scholar
  98. Verma S, Venkataraman C, Boucher O (2012) Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmos Environ 45:4398–4407CrossRefGoogle Scholar
  99. Vijayakumar K, Devara PCS, Simha CP (2012) Aerosol Features during Drought and Normal Monsoon Years: a Study Undertaken with Multi-Platform Measurements over A Tropical Urban Site. Aeros Air Qual Res 12:1444–1458Google Scholar
  100. Wang C, Kim D, Ekman AML, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36:L21704. doi:10.1029/2009GL040114 CrossRefGoogle Scholar
  101. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamadaki D, Tokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC 5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. G. Kaskaoutis
    • 1
  • E. E. Houssos
    • 2
  • D. Goto
    • 3
  • A. Bartzokas
    • 2
  • P. T. Nastos
    • 4
  • P. R. Sinha
    • 5
  • S. K. Kharol
    • 6
  • P. G. Kosmopoulos
    • 7
  • R. P. Singh
    • 8
  • T. Takemura
    • 9
  1. 1.Department of Physics, School of Natural SciencesShiv Nadar UniversityDadri TehsilIndia
  2. 2.Laboratory of Meteorology, Department of PhysicsUniversity of IoanninaIoanninaGreece
  3. 3.National Institute for Environmental Studies (NIES)TsukubaJapan
  4. 4.Laboratory of Climatology and Atmospheric Environment, Faculty of Geology and GeoenvironmentUniversity of AthensZografouGreece
  5. 5.National Balloon FacilityTata Institute of Fundamental ResearchHyderabadIndia
  6. 6.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  7. 7.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  8. 8.School of Earth and Environmental Sciences, Schmid College of Science and TechnologyChapman UniversityOrangeUSA
  9. 9.Research Institute for Applied MechanicsKyusyu UniversityFukuokaJapan

Personalised recommendations