Climate Dynamics

, Volume 43, Issue 7–8, pp 2261–2282 | Cite as

A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialised experiments

  • Benoît Vannière
  • Eric Guilyardi
  • Thomas Toniazzo
  • Gurvan Madec
  • Steve Woolnough


Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.


CGCMs errors Seasonal forecasts Tropical Pacific Cold tongue bias 


  1. AchutaRao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16CrossRefGoogle Scholar
  2. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles 20:2017CrossRefGoogle Scholar
  3. Balmaseda MA, Vidard A, Anderson DLT (2008) The ecmwf ocean analysis system: ora-s3. Mon Weather Rev 136:3018–3034CrossRefGoogle Scholar
  4. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 20022011 is our capability increasing? Bull Am Meteorol Soc 92:631–651Google Scholar
  5. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2013) ENSO representation in climate models: from cmip3 to cmip5. Clim Dyn. doi:10.1007/s382-013-1783-z
  6. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  7. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using toga coare data. J Atmos Sci 58(21):3158–3183CrossRefGoogle Scholar
  8. Bouillon S, ÁngelMorales Maqueda M, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184CrossRefGoogle Scholar
  9. Braconnot P, Hourdin F, Bony S, Dufresne J, Grandpeix J, Marti O (2007) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean-atmosphere model. Clim Dyn 29:501–520CrossRefGoogle Scholar
  10. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104CrossRefGoogle Scholar
  11. Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298CrossRefGoogle Scholar
  12. Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39:509–529CrossRefGoogle Scholar
  13. Cronin MF, Bond NA, Fairall CW, Weller RA (2006) Surface cloud forcing in the East Pacific Stratus Deck/Cold Tongue/ITCZ Complex. J Clim 19:392–409CrossRefGoogle Scholar
  14. de Szoeke SP, Xie SP (2008) The tropical Eastern Pacific seasonal cycle: assessment of errors and mechanisms in IPCC AR4 coupled ocean atmosphere general circulation models*. J Clim 21:2573CrossRefGoogle Scholar
  15. de Szoeke SP, Wang Y, Xie SP, Miyama T (2006) Effect of shallow cumulus convection on the eastern Pacific climate in a coupled model. Geophys Res Lett 33:17,713 CrossRefGoogle Scholar
  16. Delecluse P, Davey M, Kitamura Y, Philander S, Suarez M, Bengtsson L (1998) TOGA review paper: coupled general circulation modeling of the tropical Pacific. J Geophys Res 103(C7):14,357–14,373 CrossRefGoogle Scholar
  17. Dijkstra H, Neelin J (1995) Ocean-atmosphere interaction and the tropical climatology. part I: the dangers of flux correction. J Clim 8:1325–1342CrossRefGoogle Scholar
  18. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165Google Scholar
  19. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2329Google Scholar
  20. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Geophys Res Lett 102:12609–12646CrossRefGoogle Scholar
  21. Gent P, Yeager S, Neale R, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the ccsm. Clim Dyn 34:819–833CrossRefGoogle Scholar
  22. Gu D, Philander SG (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Sci Agric 275(5301):805–807CrossRefGoogle Scholar
  23. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh G (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Met Soc 90:325–340CrossRefGoogle Scholar
  24. Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19,713CrossRefGoogle Scholar
  25. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The lmdz4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  26. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2012) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn p 177Google Scholar
  27. Izumo T, Picaut J, Blanke B (2002) Tropical pathways, equatorial undercurrent variability and the 1998 La Niña. grl 29:220,000–1CrossRefGoogle Scholar
  28. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829Google Scholar
  29. Jin EK, Kinter III JL, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664Google Scholar
  30. Johnson HL, Marshall DP (2002) A theory for the surface atlantic response to thermohaline variability. J Phys Oceanogr 32(4):1121–1132CrossRefGoogle Scholar
  31. Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing El Niño Southern Oscillation forecasts using sea surface temperature. Tellus Ser A 57:340CrossRefGoogle Scholar
  32. Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing. Geophys Res Lett 34:4604CrossRefGoogle Scholar
  33. Krinner G, Viovy N, de Noblet-Ducoudre N, Friedlingstein P, Ciais P (2002) A dynamical global vegetation model for studies of the coupled atmosphere-biosphere system. AGU Fall Meeting Abstracts p B729Google Scholar
  34. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325CrossRefGoogle Scholar
  35. Lazar A, Vintzileos A, Doblas-Reyes FJ, Rogel P, Delecluse P (2005) Seasonal forecast of tropical climate with coupled oceanatmosphere general circulation models: on the respective role of the atmosphere and the ocean components in the drift of the surface temperature error. Tellus A 57:387–397CrossRefGoogle Scholar
  36. Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth system model. Geophys Res Lett 36:21,602CrossRefGoogle Scholar
  37. Liebmann B, Smith C (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  38. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  39. Liu H, Zhang M, Lin W (2012) An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J Clim 25:140–155CrossRefGoogle Scholar
  40. Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  41. Ma C, Mechoso C, Robertson A, Arakawa A (1996) Peruvian stratus clouds and the tropical pacific circulation: a coupled ocean-atmosphere GCM study. J Clim 9(7):1635–1645CrossRefGoogle Scholar
  42. Madec G (2008) Nemo ocean engine. France, Institut Pierre-Simon Laplace (IPSL)Google Scholar
  43. Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26CrossRefGoogle Scholar
  44. Martin G, Milton S, Senior C, Brooks M, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23(22):5933–5957CrossRefGoogle Scholar
  45. Mechoso C, Robertson A, Barth N, Davey M, Delecluse P, Gent P, Ineson S, Kirtman B, Latif M, Treut H et al (1995) The seasonal cycle over the tropical pacific in coupled ocean-atmosphere general circulation models. Mon Weather Rev 123(9):2825–2838CrossRefGoogle Scholar
  46. Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515CrossRefGoogle Scholar
  47. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meterol Soc 88:1383–1394CrossRefGoogle Scholar
  48. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89:459CrossRefGoogle Scholar
  49. Philander S, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski R (1996) Why the ITCZ is mostly North of the Equator. J Clim 9:2958–2972CrossRefGoogle Scholar
  50. Phillips T, Potter G, Williamson D, Cederwall R, Boyle J, Fiorino M, Hnilo J, Olson J, Xie S, Yio J (2004) Evaluating parameterizations in general circulation models: climate simulation meets weather prediction. Bull Am Meteorol Soc 85(12):1903–1915CrossRefGoogle Scholar
  51. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res (Atmos) 108:4407CrossRefGoogle Scholar
  52. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  53. Rodwell M, Palmer T (2007) Using numerical weather prediction to assess climate models. Q J R Meteorol Soc 133(622):129–146CrossRefGoogle Scholar
  54. Rossow W, Walker A, Beuschel D, Roiter M (1996) international satellite cloud climatology project (ISCCP) documentation of new cloud datasets. WMO/TD-No, World Meteorol Org 737:115Google Scholar
  55. Song X, Zhang GJ (2009) Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: climatology and atmospheric feedback. J Clim 22:4299CrossRefGoogle Scholar
  56. Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40:2381–2399Google Scholar
  57. Toniazzo T (2010) Climate variability in the south-eastern tropical Pacific and its relation with ENSO: a GCM study. Clim Dyn 34:1093–1114CrossRefGoogle Scholar
  58. Uppala SM, Kallberg P, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LV, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Morcrette JJ, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 Re-analysis. Q J R Met Soc 131:2961–3012CrossRefGoogle Scholar
  59. Valcke S, Morel T (2006) OASIS and PALM, the CERFACS couplers. Tech. rep., CERFACSGoogle Scholar
  60. Vannière B, Guilyardi E, Madec G, Doblas-Reyes FJ, Woolnough S (2013) Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40(3–4), 963–981Google Scholar
  61. Wang Y, Xie S, Xu H, Wang B (2004) Regional model simulations of marine boundary layer clouds over the southeast pacific off south america. Part I: control experiment*. Mon Weather Rev 132(1):274–296CrossRefGoogle Scholar
  62. Weisheimer A, Doblas-Reyes F, Palmer T, Alessandri A, Arribas A, Deque M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) Ensembles: a new multi-model ensemble for seasonal-to-annual predictions: skill and progress beyond demeter in forecasting tropical pacific SSTs. Geophys Res Lett 36(21):L21711CrossRefGoogle Scholar
  63. Williams K, Bodas-Salcedo A, Deque M, Fermepin S, Medeiros B, Watanabe M, Jakob C, Klein S, Senior C, Williamson D (2013) The transpose-AMIP II experiment and its application to the understanding of southern ocean cloud biases in climate models. J Clim 26(10):3258–3274CrossRefGoogle Scholar
  64. Wittenberg AT, Rosati A, Lau NC, Ploshay JJ (2006) GFDLs CM2 Global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  65. Xiang B, Wang B, Ding Q, Jin F, Fu X, Kim HJ (2012) Reduction of the thermocline feedback associated with mean sst bias in ENSO simulation. Clim Dyn 39:1413–1430CrossRefGoogle Scholar
  66. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  67. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19:2545CrossRefGoogle Scholar
  68. Yu JY, Mechoso CR (1999) Links between annual variations of peruvian stratocumulus clouds and of SST in the Eastern equatorial Pacific. J Clim 12:3305–3318CrossRefGoogle Scholar
  69. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (oaflux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Technical Report pp 1–64Google Scholar
  70. Zelle H, van Oldenborgh G, Dijkstra H (2005) El Niño and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J Clim 18:4669–4683CrossRefGoogle Scholar
  71. Zhang GJ, Wang H (2006) Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys Res Lett 33:6709CrossRefGoogle Scholar
  72. Zhang X, McPhaden MJ (2010) Surface layer heat balance in the Eastern Equatorial Pacific Ocean on Interannual Time Scales: influence of local versus remote wind forcing*. J Clim 23:4375–4394CrossRefGoogle Scholar
  73. Zhang X, Lin W, Zhang M (2007) Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J Geophys Res 112:12102CrossRefGoogle Scholar
  74. Zheng Y, Shinoda T, Lin JL, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the Southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J Clim 24:4139–4164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benoît Vannière
    • 1
  • Eric Guilyardi
    • 1
    • 2
  • Thomas Toniazzo
    • 2
  • Gurvan Madec
    • 1
  • Steve Woolnough
    • 2
  1. 1.Laboratoire d’Océanographie et du Climat, Expérimentations et approches numériques, Institut Pierre Simon LaplaceUnité Mixte de Recherche 7159 CNRS / IRD/Universit Pierre et Marie Curie/MNHNParis Cedex 05France
  2. 2.NCAS-Climate, Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations