Climate Dynamics

, Volume 43, Issue 7–8, pp 2111–2130 | Cite as

Summer temperature in the eastern part of southern South America: its variability in the twentieth century and a teleconnection with Oceania

  • Martín Jacques-CoperEmail author
  • Stefan Brönnimann


The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.


Interannual variability Interdecadal variability South America Patagonia Oceania Teleconnection 



The authors would like to thank the availability of the Niño3.4 index (, the PDO index (, the IPO index (, the Zhang DJF AAO index (, and the Matlab code of the Rodionov’s sequential t test ( The SLP time series of Darwin (Australia) has been obtained from SLP data from New Zealand have been accessed from and Australian precipitation data from GHCN-Monthly version 2 provided by NOAA’s National Climatic Data Center ( Twentieth century reanalysis V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site ( ECMWF ERA-40 data used in this study have been obtained from the ECMWF Data Server ( Thanks to Prof. Dr. Olivia Romppainen-Martius, Dr. Fabia Hüsler, Dr. Christoph Welker, Dr. Alexander Stickler, Dr. Renate Auchmann, Matthias Röthlisberger and Pablo Sánchez for their support during the preparation of the manuscript. This paper was greatly improved by the comments and suggestions of two anonymous reviewers. MJC acknowledges the BecasChile scholarship program (Comisión Nacional de Investigación Científica y Tecnológica de Chile, CONICYT).


  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface Climate. Mon Weather Rev 116:505–524. doi: 10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2 CrossRefGoogle Scholar
  2. Agosta EA, Compagnucci RH (2008) The 1976/77 austral summer climate transition effects on the atmospheric circulation and climate in southern South America. J Clim 21:4365–4383. doi: 10.1175/2008JCLI2137.1 CrossRefGoogle Scholar
  3. Agosta EA, Compagnucci RH (2011) Central-west Argentina summer precipitation variability and atmospheric teleconnections. J Clim 25:1657–1677. doi: 10.1175/JCLI-D-11-00206.1 CrossRefGoogle Scholar
  4. Ambrizzi T, Hoskins BJ (1997) Stationary rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919–928. doi: 10.1002/qj.49712354007 CrossRefGoogle Scholar
  5. Barrucand M, Rusticucci M, Vargas W (2008) Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. J Geophys Res Atmos 113:D20111. doi: 10.1029/2007JD009026 CrossRefGoogle Scholar
  6. Berbery EH, Nogués-Paegle J (1993) Intraseasonal interactions between the Tropics and extratropics in the Southern Hemisphere. J Atmos Sci 50:1950–1965. doi: 10.1175/1520-0469(1993)050<1950:IIBTTA>2.0.CO;2 CrossRefGoogle Scholar
  7. Berman AL, Silvestri G, Compagnucci R (2012) Eastern Patagonia seasonal precipitation: influence of southern hemisphere circulation and links with subtropical South American precipitation. J Clim 25:6781–6795. doi: 10.1175/JCLI-D-11-00514.1 CrossRefGoogle Scholar
  8. Bretherton CS, Widmann M, Dymnikov VP et al (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2 CrossRefGoogle Scholar
  9. Brönnimann S, Compo GP (2012) Ozone highs and associated flow features in the first half of the twentieth century in different data sets. Meteorol Zeitschrift 21:49–59. doi: 10.1127/0941-2948/2012/0284 CrossRefGoogle Scholar
  10. Brönnimann S, Luterbacher J, Staehelin J et al (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Nino. Nature 431:971–974CrossRefGoogle Scholar
  11. Brönnimann S, Compo GP, Spadin R et al (2011) Early ship-based upper-air data and comparison with the twentieth century reanalysis. Clim Past 7:265–276. doi: 10.5194/cp-7-265-2011 CrossRefGoogle Scholar
  12. Cai W, Whetton PH, Pittock AB (2001) Fluctuations of the relationship between ENSO and northeast Australian rainfall. Clim Dyn 17:421–432. doi: 10.1007/PL00013738 CrossRefGoogle Scholar
  13. Cai W, van Rensch P, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J Clim 23:4944–4955. doi: 10.1175/2010JCLI3501.1 CrossRefGoogle Scholar
  14. Carvalho LMV, Jones C, Silva AE et al (2011) The South American monsoon system and the 1970s climate transition. Int J Climatol 31:1248–1256. doi: 10.1002/joc.2147 CrossRefGoogle Scholar
  15. Cerne SB, Vera CS (2011) Influence of the intraseasonal variability on heat waves in subtropical South America. Clim Dyn 36:2265–2277. doi: 10.1007/s00382-010-0812-4 CrossRefGoogle Scholar
  16. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  17. Crowley TJ (2000) Causes of climate change over the past 1000 years. Sci 289:270–277. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  18. Díaz A, Aceituno P (2003) Atmospheric circulation anomalies during episodes of enhanced and reduced convective cloudiness over Uruguay. J Clim 16:3171–3185. doi: 10.1175/1520-0442(2003)016<3171:ACADEO>2.0.CO;2 CrossRefGoogle Scholar
  19. Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410. doi: 10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2 CrossRefGoogle Scholar
  20. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153. doi: 10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2 CrossRefGoogle Scholar
  21. Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114:D04102. doi: 10.1029/2008JD010519 CrossRefGoogle Scholar
  22. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode*. J Clim 19:979–997. doi: 10.1175/JCLI3671.1 CrossRefGoogle Scholar
  23. Fogt R, Bromwich D, Hines K (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi: 10.1007/s00382-010-0905-0 CrossRefGoogle Scholar
  24. Gallego D, Ribera P, Garcia-Herrera R et al (2005) A new look for the Southern Hemisphere jet stream. Clim Dyn 24:607–621. doi: 10.1007/s00382-005-0006-7 CrossRefGoogle Scholar
  25. Garreaud R (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2559. doi: 10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2 CrossRefGoogle Scholar
  26. Garreaud R, Wallace JM (1998) Summertime incursions of midlatitude air into subtropical and tropical South America. Mon Weather Rev 126:2713–2733. doi: 10.1175/1520-0493(1998)126<2713:SIOMAI>2.0.CO;2 CrossRefGoogle Scholar
  27. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2008) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol. doi: 10.1016/j.palaeo.2007.10.032 Google Scholar
  28. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. doi: 10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  29. Garreaud R, Lopez P, Minvielle M, Rojas M (2012) Large-scale control on the Patagonian climate. J Clim 26:215–230. doi: 10.1175/JCLI-D-12-00001.1 CrossRefGoogle Scholar
  30. Gershunov A, Schneider N, Barnett T (2001) Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: signal or noise? J Clim 14:2486–2492. doi: 10.1175/1520-0442(2001)014<2486:LFMOTE>2.0.CO;2 CrossRefGoogle Scholar
  31. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33:1–4. doi: 10.1029/2006GL027721 CrossRefGoogle Scholar
  32. Grimm AM, Zilli MT (2009) Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J Clim 22:2257–2275. doi: 10.1175/2008JCLI2345.1 CrossRefGoogle Scholar
  33. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467. doi: 10.1175/JCLI4134.1 CrossRefGoogle Scholar
  34. Jacques M (2009) Caracterización del salto climático de mediados de los 1970s en Sudamérica. MSc Thesis. Universidad de ChileGoogle Scholar
  35. Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10:2548–2568. doi: 10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2 CrossRefGoogle Scholar
  36. Kerr RA (1992) Unmasking a shifty climate system. Science 255(80):1508–1510. doi: 10.1126/science.255.5051.1508 CrossRefGoogle Scholar
  37. Kidson JW (1991) Intraseasonal variations in the Southern Hemisphere circulation. J Clim 4:939–953. doi: 10.1175/1520-0442(1991)004<0939:IVITSH>2.0.CO;2 CrossRefGoogle Scholar
  38. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287. doi: 10.1175/JCLI3617.1 CrossRefGoogle Scholar
  39. Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127. doi: 10.1002/joc.3370100202 CrossRefGoogle Scholar
  40. Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127. doi: 10.1002/joc.3370100202 CrossRefGoogle Scholar
  41. Liebmann B, Mechoso CR (2011) The South American monsoon system. In: Chang C-P, Ding Y, Lau N-C (eds) The global monsoon system: research and forecast, 2nd edn. World Scientific Publication Company, Singapore, pp 137–157CrossRefGoogle Scholar
  42. Liebmann B, Kiladis GN, Marengo J et al (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891. doi: 10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2 CrossRefGoogle Scholar
  43. Liebmann B, Kiladis GN, Vera CS et al (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J Clim 17:3829–3842. doi: 10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2 CrossRefGoogle Scholar
  44. Luterbacher J, Neukom R, González-Rouco F et al (2011) Reconstructed and simulated medieval climate anomaly in southern South America. PAGES news 19:20–21Google Scholar
  45. Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  46. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280. doi: 10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2 CrossRefGoogle Scholar
  47. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  48. Meehl GA et al (2007) Global climate projections. In: Solomon S (ed) Climate change 2007: the physical science basis. Cambridge University press, Cambridge, pp 747–846Google Scholar
  49. Mo KC, Paegle JN (2001) The Pacific–South American modes and their downstream effects. Int J Climatol 21:1211–1229. doi: 10.1002/joc.685 CrossRefGoogle Scholar
  50. Montecinos A, Purca S, Pizarro O (2003) Interannual-to-interdecadal sea surface temperature variability along the western coast of South America. Geophys Res Lett 30:1570. doi: 10.1029/2003GL017345 CrossRefGoogle Scholar
  51. Neukom R, Luterbacher J, Villalba R et al (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res 37:1–6. doi: 10.1029/2010GL043680 Google Scholar
  52. Neukom R, Luterbacher J, Villalba R et al (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51. doi: 10.1007/s00382-010-0793-3 CrossRefGoogle Scholar
  53. Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291. doi: 10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2 CrossRefGoogle Scholar
  54. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2849. doi: 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2 CrossRefGoogle Scholar
  55. Piovano EL, Ariztegui D, Moreira SD (2002) Recent environmental changes in Laguna Mar Chiquita (central Argentina): a sedimentary model for a highly variable saline lake. Sedimentology 49:1371–1384. doi: 10.1046/j.1365-3091.2002.00503.x CrossRefGoogle Scholar
  56. Power S, Casey T, Folland C et al (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi: 10.1007/s003820050284 CrossRefGoogle Scholar
  57. Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755–4771. doi: 10.1175/JCLI3868.1 CrossRefGoogle Scholar
  58. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  59. Rodionov SN (2005) A sequential method for detecting regime shifts in the mean and variance. In: Velikova V, Chipev N (eds) Large-scale disturbances (regime shifts) recover. Aquat Ecosyst Challenges Manag Towar Sustain, Varna, pp 68–72Google Scholar
  60. Rosenblüth B, Fuenzalida HA, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17:67–85. doi: 10.1002/(SICI)1097-0088(199701)17:1<67:AID-JOC120>3.0.CO;2-G CrossRefGoogle Scholar
  61. Röthlisberger M (2012) Vergleich des El Niño Signals in unterschiedlichen Datensätzen und anhand verschiedener El Niño Definitionen. BSc Thesis. Universität BernGoogle Scholar
  62. Sen Gupta A, England MH (2006) Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J Clim 19:4457–4486. doi: 10.1175/JCLI3843.1 CrossRefGoogle Scholar
  63. Silvestri GE, Vera CS (2003) Antarctic oscillation signal on precipitation anomalies over southeastern South America. Geophys Res Lett 30:2115. doi: 10.1029/2003GL018277 CrossRefGoogle Scholar
  64. Silvestri G, Vera C (2009) Nonstationary impacts of the southern annular mode on Southern Hemisphere climate. J Clim 22:6142–6148. doi: 10.1175/2009JCLI3036.1 CrossRefGoogle Scholar
  65. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477. doi: 10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2 CrossRefGoogle Scholar
  66. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Sci 296:895–899. doi: 10.1126/science.1069270 CrossRefGoogle Scholar
  67. Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:988–993. doi: 10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2 CrossRefGoogle Scholar
  68. Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S (ed) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 253–336Google Scholar
  69. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  70. Wang G, Cai W (2013) Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci Rep 3. doi: 10.1038/srep02039
  71. Welker C, Martius O (2012) Variability of cyclones over the North Atlantic and Europe since 1871. Geophys Res Abstr 14:2507Google Scholar
  72. Yeh S-W, Kug J-S, Dewitte B et al (2009) El Nino in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  73. Zhang Z-Y, Gong D-Y, He X-Z et al (2010) Statistical reconstruction of the antarctic oscillation index based on multiple proxies. Atmos Ocean Sci Lett 3:283–287Google Scholar
  74. Zhang Q, Körnich H, Holmgren K (2012) How well do reanalyses represent the southern African precipitation? Clim Dyn 40:951–962. doi: 10.1007/s00382-012-1423-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations