Climate Dynamics

, Volume 43, Issue 7–8, pp 2043–2059 | Cite as

A dissection of the surface temperature biases in the Community Earth System Model

  • Tae-Won Park
  • Yi Deng
  • Ming Cai
  • Jee-Hoon Jeong
  • Renjun Zhou


Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of −1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately −0.80 K. Over land, albedo bias contributes −1.20 K to the averaged cold bias of −1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model’s simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.


CESM1 surface temperature bias Temperature decomposition Radiative and nonradiative processes Climate feedback-responses analysis method 



The ERA-Interim data used in this study were provided by the European Centre for Medium-Range Weather forecast (ECMFW). The Georgia Tech authors (Deng and Park) and FSU author (Cai) were supported by DOE Office of Science Regional and Global Climate Modeling (RGCM) program DE-SC0005596 and Grant DE-SC0004974, respectively. Deng is also supported by NSF grant AGS 114760. Jee-Hoon Jeong is supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3066.


  1. Bao XH, Zhang FQ (2013) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim 26(1):206–214. doi: 10.1175/JCLI-D-12-00056.1 CrossRefGoogle Scholar
  2. Blazey BA, Holland MM, Hunke EC (2013) Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM. Cryosph Discuss 7:1495–1532. doi: 10.5194/TCD-7-1495-2013 CrossRefGoogle Scholar
  3. Bracegirdle TJ, Marshall GJ (2012) The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim 25(20):7138–7146. doi: 10.1175/JCLI-D-11-00685.1 CrossRefGoogle Scholar
  4. Cai M, Lu JH (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dyn 32(6):887–900. doi: 10.1007/s00382-008-0424-4 CrossRefGoogle Scholar
  5. Cess RD, Potter GL, Blanchet JP, Boer GJ, Delgenio AD, Deque M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Letreut H, Li ZX, Liang XZ, Mcavaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang MH (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general-circulation models. J Geophys Res Atmos 95(D10):16601–16615. doi: 10.1029/JD095ID10P16601 CrossRefGoogle Scholar
  6. Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 ocean component. J Clim 25(5):1361–1389. doi: 10.1175/JCLI-D-11-00091.1 CrossRefGoogle Scholar
  7. de Boer G, Chapman W, Kay JE, Medeiros B, Shupe MD, Vavrus S, Walsh J (2012) A characterization of the present-day arctic atmosphere in CCSM4. J Clim 25(8):2676–2695. doi: 10.1175/JCLI-D-11-00228.1 CrossRefGoogle Scholar
  8. Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng XB, Bosilovich MG (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25(6):1916–1944. doi: 10.1175/JCLI-D-11-00004.1 CrossRefGoogle Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137(656):553–597. doi: 10.1002/QJ.828 CrossRefGoogle Scholar
  10. Deng Y, Park T-W, Cai M (2012) Process-based decomposition of the global surface temperature response to El Niño in Boreal winter. J Atmos Sci 69(5):1706–1712. doi: 10.1175/JAS-D-12-023.1 CrossRefGoogle Scholar
  11. Deng Y, Park T-W, Cai M (2013) Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the Northern annular mode. J Clim 26. doi: 10.1175/JCLI-D-12-00431.1
  12. Fu Q, Liou KN (1992) On the correlated K-distribution method for radiative-transfer in nonhomogeneous atmospheres. J Atmos Sci 49(22):2139–2156CrossRefGoogle Scholar
  13. Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50(13):2008–2025CrossRefGoogle Scholar
  14. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang MH (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  15. Grodsky SA, Carton JA, Nigam S, Okumura YM (2012) Tropical Atlantic biases in CCSM4. J Clim 25(11):3684–3701. doi: 10.1175/JCLI-D-11-00315.1 CrossRefGoogle Scholar
  16. Jahn A, Sterling K, Holland MM, Kay JE, Maslanik JA, Bitz CM, Bailey DA, Stroeve J, Hunke EC, Lipscomb WH, Pollak DA (2012) Late-twentieth-century simulation of Arctic sea ice and Ocean properties in the CCSM4. J Clim 25(5):1431–1452. doi: 10.1175/JCLI-D-11-00201.1 CrossRefGoogle Scholar
  17. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi: 10.1029/2012GL051591 CrossRefGoogle Scholar
  18. Jeong JH, Linderholm HW, Woo SH, Folland C, Kim BM, Kim SJ, Chen DL (2013) Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J Clim 26(6):1956–1972. doi: 10.1175/JCLI-D-12-00159.1 CrossRefGoogle Scholar
  19. Kay JE, Hillman BR, Klein SA, Zhang Y, Medeiros B, Pincus R, Gettelman A, Eaton B, Boyle J, Marchand R, Ackerman TP (2012) Exposing global cloud biases in the community atmosphere model (CAM) using satellite observations and their corresponding instrument simulators. J Clim 25(15):5190–5207. doi: 10.1175/JCLI-D-11-00469.1 CrossRefGoogle Scholar
  20. Landrum L, Holland MM, Schneider DP, Hunke E (2012) Antarctic Sea ice climatology, variability, and late twentieth-century change in CCSM4. J Climate 25(14):4817–4838. doi: 10.1175/JCLI-D-11-00289.1 CrossRefGoogle Scholar
  21. Lu JH, Cai M (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: formulation. Clim Dyn 32(6):873–885. doi: 10.1007/S00382-008-0425-3 CrossRefGoogle Scholar
  22. Meehl GA, Washington WM, Arblaster JM, Hu AX, Teng HY, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308. doi: 10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  23. Montegut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12):C12003. doi: 10.1029/2004JC002378 CrossRefGoogle Scholar
  24. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31(4):545–557. doi: 10.1002/JOC.2098 CrossRefGoogle Scholar
  25. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res Atmos 117:D08101. doi: 10.1029/2011JD017187 CrossRefGoogle Scholar
  26. Munoz E, Weijer W, Grodsky SA, Bates SC, Wainer I (2012) Mean and variability of the tropical atlantic ocean in the CCSM4. J Clim 25(14):4860–4882. doi: 10.1175/JCLI-D-11-00294.1 CrossRefGoogle Scholar
  27. Niu GY, Yang ZL (2007) An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J Geophys Res Atmos 112:D21101. doi: 10.1029/2007JD008674 CrossRefGoogle Scholar
  28. Park T-W, Deng Y, Cai M (2012) Feedback attribution of the El Niño-Southern Oscillation-related atmospheric and surface temperature anomalies. J Geophys Res 117(D23):D23101. doi: 10.1029/2012JD018468 CrossRefGoogle Scholar
  29. Pincus R, Klein SA (2000) Unresolved spatial variability and microphysical process rates in large-scale models. J Geophys Res Atmos 105(D22):27059–27065. doi: 10.1029/2000JD900504 CrossRefGoogle Scholar
  30. Pincus R, Barker HW, Morcrette JJ (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res Atmos 108(D13). doi: 10.1029/2002JD003322
  31. Raisanen P, Barker HW, Khairoutdinov MF, Li JN, Randall DA (2004) Stochastic generation of subgrid-scale cloudy columns for large-scale models. Q J Roy Meteor Soc 130(601):2047–2067. doi: 10.1256/QJ.03.99 CrossRefGoogle Scholar
  32. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 589–662Google Scholar
  33. Rodrigo JS, Buchlin JM, van Beeck J, Lenaerts JTM, van den Broeke MR (2013) Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Clim Dyn 40(1–2):353–376. doi: 10.1007/s00382-012-1396-y CrossRefGoogle Scholar
  34. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  35. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. doi: 10.1029/2012GL052676 CrossRefGoogle Scholar
  36. Szczypta C, Calvet JC, Albergel C, Balsamo G, Boussetta S, Carrer D, Lafont S, Meurey C (2011) Verification of the new ECMWF ERA-Interim reanalysis over France. Hydrol Earth Syst Sci 15(2):647–666. doi: 10.5194/hess-15-647-2011 CrossRefGoogle Scholar
  37. Tastula EM, Vihma T, Andreas EL, Galperin B (2013) Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice. J Geophys Res Atmos 118(10):4194–4204. doi: 10.1002/JGRD.50336 CrossRefGoogle Scholar
  38. Taylor PC, Ellingson RG, Cai M (2011a) Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J Clim 24(11):2737–2753. doi: 10.1175/2010JCLI3788.1 CrossRefGoogle Scholar
  39. Taylor PC, Ellingson RG, Cai M (2011b) Seasonal variations of climate feedbacks in the NCAR CCSM3. J Clim 24(13):3433–3444. doi: 10.1175/2011JCLI3862.1 CrossRefGoogle Scholar
  40. Taylor PC, Cai M, Hu AX, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to polar warming amplification. J Clim 26(18):7023–7043. doi: 10.1175/JCLI-D-12-00696.1 CrossRefGoogle Scholar
  41. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 235–336Google Scholar
  42. Vavrus S, Waliser D (2008) An improved parametrization for simulating arctic cloud amount in the CCSM3 climate model. J Clim 21(21):5673–5687. doi: 10.1175/2008JCLI2299.1 CrossRefGoogle Scholar
  43. Wang AH, Zeng XB (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res Atmos 117:D05102. doi: 10.1029/2011JD016553 Google Scholar
  44. Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, Del Genio AD, Hack JJ, Loeb NG, Lohmann U, Minnis P, Musat I, Pincus R, Stier P, Suarez MJ, Webb MJ, Wu JB, Xie SC, Yao MS, Zhang JH (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res Atmos 110(D15):D15S02. doi: 10.1029/2004JD005021 Google Scholar
  45. Zygmuntowska M, Mauritsen T, Quaas J, Kaleschke L (2012) Arctic clouds and surface radiation—a critical comparison of satellite retrievals and the ERA-interim reanalysis. Atmos Chem Phys 12(14):6667–6677. doi: 10.5194/ACP-12-6667-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Faculty of Earth Systems and Environmental SciencesChonnam National UniversityGwangjuSouth Korea
  4. 4.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations