Climate Dynamics

, Volume 43, Issue 7–8, pp 1893–1914 | Cite as

What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?

  • Ali Belmadani
  • Vincent Echevin
  • Francis Codron
  • Ken Takahashi
  • Clémentine Junquas
Original Article


The dynamics of the Peru–Chile upwelling system (PCUS) are primarily driven by alongshore wind stress and curl, like in other eastern boundary upwelling systems. Previous studies have suggested that upwelling-favorable winds would increase under climate change, due to an enhancement of the thermally-driven cross-shore pressure gradient. Using an atmospheric model on a stretched grid with increased horizontal resolution in the PCUS, a dynamical downscaling of climate scenarios from a global coupled general circulation model (CGCM) is performed to investigate the processes leading to sea-surface wind changes. Downscaled winds associated with present climate show reasonably good agreement with climatological observations. Downscaled winds under climate change show a strengthening off central Chile south of 35°S (at 30°S–35°S) in austral summer (winter) and a weakening elsewhere. An alongshore momentum balance shows that the wind slowdown (strengthening) off Peru and northern Chile (off central Chile) is associated with a decrease (an increase) in the alongshore pressure gradient. Whereas the strengthening off Chile is likely due to the poleward displacement and intensification of the South Pacific Anticyclone, the slowdown off Peru may be associated with increased precipitation over the tropics and associated convective anomalies, as suggested by a vorticity budget analysis. On the other hand, an increase in the land–sea temperature difference is not found to drive similar changes in the cross-shore pressure gradient. Results from another atmospheric model with distinct CGCM forcing and climate scenarios suggest that projected wind changes off Peru are sensitive to concurrent changes in sea surface temperature and rainfall.


Regional climate change Peru–Chile upwelling system Dynamical downscaling Upwelling-favorable winds Climate scenarios 



The LMDz-ESP05 simulations were performed on Brodie, the NEC SX8 computer at Institut du Développement et des Ressources en Informatique Scientifique (IDRIS), Orsay, France. The LMDz-SA1 simulations were performed on Calcul Intensif pour le Climat, l’Atmosphère et la Dynamique (CICLAD), a PC cluster at IPSL, within the framework of previous research supported by the European Commission’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement N°212492 (CLARIS LPB. A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin), CNRS/LEFE Program, and CONICET PIP 112-200801-00399. A. Belmadani was supported by the Agence Nationale de la Recherche (ANR) Peru Ecosystem Projection Scenarios (PEPS, ANR-08-RISK-012) project. Additional support was provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), by the National Aeronautics and Space Administration (NASA) through Grant NNX07AG53G, and by the National Oceanic and Atmospheric Administration (NOAA) through Grant NA11NMF4320128, which sponsor research at the IPRC. A. Belmadani is now supported by the Universidad de Concepcion (UdeC). V. Echevin and C. Junquas are supported by the Institut de Recherche pour le Développement (IRD). F. Codron is supported by the Université Pierre et Marie Curie (UPMC). K. Takahashi is supported by the Instituto Geofisico del Peru (IGP) and had partial support from the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) and the Université Paul Sabatier. This work is a contribution of the IRD DISCOH International Mixed Laboratory. K. Hamilton, A. Lauer, and Y. Wang are thanked for fruitful discussions. This is the IPRC/SOEST publication #1028/9047.


  1. Albert A, Echevin V, Lévy M, Aumont O (2010) Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J Geophys Res 115:C12033. doi: 10.1029/2010JC006569 CrossRefGoogle Scholar
  2. Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 56:4032–4048Google Scholar
  3. Bakun A (1990) Global climate change and intensification of coastal upwelling. Science 247:198–201. doi: 10.1126/science.247.4939.198 CrossRefGoogle Scholar
  4. Bakun A, Weeks SJ (2008) The marine ecosystem off Peru: what are the secrets of its fishery productivity and what might its future hold? Prog Oceanogr 79:290–299. doi: 10.1016/j.pocean.2008.10.027 CrossRefGoogle Scholar
  5. Bakun A, Field D, Renondo-Rodriguez A, Weeks SJ (2010) Greenhouse gas, upwelling favourable winds, and the future of upwelling systems. Glob Chang Biol 16:1213–1228. doi: 10.1111/j.1365-2486.2009.02094.x CrossRefGoogle Scholar
  6. Barton ED, Field DB, Roy C (2013) Canary current upwelling: more or less? Prog Oceanogr. doi: 10.1016/j.pocean.2013.07.007 Google Scholar
  7. Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23:3181–3204. doi: 10.1175/2010JCLI2830.1 CrossRefGoogle Scholar
  8. Boé J, Hall A, Colas F, McWilliams JC, Qu X, Kurian J, Kapnick SB (2011) What shapes mesoscale wind anomalies in coastal upwelling zones? Clim Dyn 36(11–12):2037–2049. doi: 10.1007/s00382-011-1058-5 CrossRefGoogle Scholar
  9. Boville BA, Gent PR (1998) The NCAR climate system model, version one. J Clim 11:1115–1130. doi: 10.1175/1520-0442(1998)011<1115:TNCSMV>2.0.CO:2 CrossRefGoogle Scholar
  10. Capet XJ, Marchesiello P, McWilliams JC (2004) Upwelling response to coastal wind profiles. Geophys Res Lett 31:L13311. doi: 10.1029/2004GL020123 CrossRefGoogle Scholar
  11. Cardone VJ, Greenwood JG, Cane MA (1990) On trends in historical marine wind data. J Clim 3:113–127. doi: 10.1175/1520-0442(1990)0030113:OTIHMW2.0.CO;2 Google Scholar
  12. Chavez FP (1995) A comparison of ship and satellite chlorophyll from California and Peru. J Geophys Res 100:24855–24862. doi: 10.1029/95JC02738 CrossRefGoogle Scholar
  13. Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current System: brief history, present status and a view towards the future. Prog Oceanogr 79:95–105. doi: 10.1016/j.pocean.2008.10.012 CrossRefGoogle Scholar
  14. Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37:495–517CrossRefGoogle Scholar
  15. Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507CrossRefGoogle Scholar
  16. Christensen JH et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc A 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  18. Demarcq H (2009) Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog Oceanogr 83:376–385. doi: 10.1016/j.pocean.2009.07.022 CrossRefGoogle Scholar
  19. Echevin V, Goubanova K, Belmadani A, Dewitte B (2012) Sensitivity of the Humboldt Current system to global warming: a downscaling experiment of the IPSL-CM4 model. Clim Dyn 38(3–4):761–774. doi: 10.1007/s00382-011-1085-2 CrossRefGoogle Scholar
  20. Enfield DB (1981) Thermally-driven wind variability in the planetary boundary layer above Lima, Peru. J Geophys Res 86(C3):2005–2016. doi: 10.1029/JC086iC03p02005 CrossRefGoogle Scholar
  21. Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi: 10.1029/2008JD010519 Google Scholar
  22. Food and Agriculture Organization (2010) The state of world fisheries and aquaculture 2010. Fish. and Aquacult. Dep., Rome, 218 pGoogle Scholar
  23. Franchito SH, Rao VB, Stech JL, Lorenzzetti JA (1998) The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment. Ann Geophys 16(7):866–881CrossRefGoogle Scholar
  24. Fréon P, Barange M, Aristegui J (2009) Eastern boundary upwelling ecosystems: integrative and comparative approaches. Prog Oceanogr 83:1–14CrossRefGoogle Scholar
  25. Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29(4):543–554. doi: 10.1002/joc.1716 CrossRefGoogle Scholar
  26. Garreaud RD, Muñoz RC (2005) The low-level jet off the west coast of subtropical South America: structure and variability. Mon Weather Rev 133:2246–2261. doi: 10.1175/MWR2972.1 CrossRefGoogle Scholar
  27. Garreaud RD, Rutllant J, Quintana J, Carrasco J, Minnis P (2001) CIMAR-5: a snapshot of the lower troposphere over the subtropical southeast Pacific. Bull Am Meteorol Soc 82(10):2193–2207CrossRefGoogle Scholar
  28. Garreaud RD, Rutllant JA, Muñoz RC, Rahn DA, Ramos M, Figueroa D (2011) VOCALS-CUpEx: the Chilean upwelling experiment. Atmos Chem Phys 11:2015–2029. doi: 10.5194/acp-11-2015-2011 CrossRefGoogle Scholar
  29. Gastineau G, Le Treut H, Li L (2008) Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus 60A:863–884. doi: 10.1111/j.1600-0870.2008.00344.x CrossRefGoogle Scholar
  30. Gastineau G, Li L, Le Treut H (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim 22:3993–4013. doi: 10.1175/2009JCLI2794.1 CrossRefGoogle Scholar
  31. Gordon C et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi: 10.1007/s00382-005-0010 CrossRefGoogle Scholar
  32. Goubanova K, Ruiz C (2010) Impact of climate change on wind-driven upwelling off the coasts of Peru–Chile in a multi-model ensemble. In: duPenhoat Y, Kislov AV (eds) Climate variability in the tropical Pacific: mechanisms, modelling and observations. Maks-Press, Moscow, pp 194–201Google Scholar
  33. Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K, Terray P, Vrac M (2011) Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Clim Dyn 36(7–8):1365–1378. doi: 10.1007/s00382-010-0824-0 CrossRefGoogle Scholar
  34. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), Tech. note TN-398+IA. National Center for Atmospheric Research, Boulder, CO, 125 pGoogle Scholar
  35. Gutiérrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova K, Graco M, Field D, Mejanelle L, Velazco F, Lorre A, Salvatteci R, Quispe D, Vargas G, Dewitte B, Ortlieb L (2011) Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys Res Lett 38:L07603. doi: 10.1029/2010GL046324 CrossRefGoogle Scholar
  36. Halpern D (2002) Offshore Ekman transport and Ekman pumping off Peru during the 1997–1998 El Niño. Geophys Res Lett 29:1075. doi: 10.1029/2001GL014097 CrossRefGoogle Scholar
  37. Haraguchi PY (1968) Inversions over the tropical eastern Pacific ocean. Mon Weather Rev 96:177–185CrossRefGoogle Scholar
  38. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  39. Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813. doi: 10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  40. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153. doi: 10.1175/2008JCLI2292.1 CrossRefGoogle Scholar
  41. Huyer A, Smith RL, Paluszkiewicz T (1987) Coastal upwelling off Peru during normal and El Niño times, 1981–1984. J Geophys Res 92(C13):14297–14307. doi: 10.1029/JC092iC13p14297 CrossRefGoogle Scholar
  42. Jin X, Dong C, Kurian J, McWilliams JC, Chelton DB, Li Z (2009) SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J Phys Oceanogr 39(11):2957–2970CrossRefGoogle Scholar
  43. Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725. doi: 10.1175/2008JCLI2620.1 CrossRefGoogle Scholar
  44. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met. Office Hadley Centre, Exeter, 40 pGoogle Scholar
  45. Junquas C, Vera C, Li L, Le Treut H (2012) Summer precipitation variability over southeastern South America in a global warming scenario. Clim Dyn 38:1867–1883CrossRefGoogle Scholar
  46. Junquas C, Vera CS, Li L, Le Treut H (2013) Impact of projected SST changes on summer rainfall in southeastern South America. Clim Dyn 40(7–8):1569–1589. doi: 10.1007/s00382-013-1695-y CrossRefGoogle Scholar
  47. Kodama Y-M (1999) Roles of the atmospheric heat sources in maintaining the subtropical convergence zones: an aqua-planet GCM study. J Atmos Sci 56:4032–4048CrossRefGoogle Scholar
  48. Large WG, Danabasoglu G (2006) Attribution and impacts of upper ocean biases in CCSM3. J Clim 19:2325–2346. doi: 10.1175/JCLI3740.1 CrossRefGoogle Scholar
  49. Lorenz P, Jacob D (2005) Influence of regional scale information on the global circulation: a two-way nesting climate simulation. Geophys Res Lett 32:L18706. doi: 10.1029/2005GL023351 Google Scholar
  50. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi: 10.1029/2006GL028443 Google Scholar
  51. Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi: 10.1007/s00382-009-0640-6 CrossRefGoogle Scholar
  52. Miranda PMA, Alves JMR, Serra N (2012) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim Dyn. doi: 10.1007/s00382-012-1442-9 Google Scholar
  53. Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi: 10.1029/2004GL021765 CrossRefGoogle Scholar
  54. Muñoz RC, Garreaud RD (2005) Dynamics of the low-level jet off the west coast of subtropical South America. Mon Weather Rev 133:3661–3677. doi: 10.1175/MWR3074.1 CrossRefGoogle Scholar
  55. Nakicenovic N et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 599 pGoogle Scholar
  56. Nigam S (1997) The annual warm to cold phase transition in the eastern equatorial Pacific: diagnosis of the role of stratus cloud-top cooling. J Clim 10:2447–2467CrossRefGoogle Scholar
  57. Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani (2013) A Peru–Chile upwelling dynamics under climate change. Clim Dyn (submitted)Google Scholar
  58. Perlin N, Skyllingstad ED, Samelson RM (2011) Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean–atmosphere model. Mon Weather Rev 139:809–829CrossRefGoogle Scholar
  59. Philander SGH, Gu D, Lambert G, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972CrossRefGoogle Scholar
  60. Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley centre climate model: HadAM3. Clim Dyn 16:123–146. doi: 10.1007/s00382-005-0009 CrossRefGoogle Scholar
  61. Previdi M, Liepert BG (2007) Annular modes and Hadley cell expansion under global warming. Geophys Res Lett 34:L22701. doi: 10.1029/2007GL031243 CrossRefGoogle Scholar
  62. Quijano-Vargas JJ (2011) Simulacion de la dinamica del viento superficial sobre la costa de Ica utilizando el modelo numerico de la atmosfera de mesoescala MM5, Thesis in Engineering in Fluid Mechanics, Universidad Nacional Mayor de San Marcos, 172 p.
  63. Rahn DA, Garreaud R (2010) Marine boundary layer over the subtropical southeast Pacific during VOCALS-Rex—part 1: mean structure and diurnal cycle. Atmos Chem Phys 10:4491–4506. doi: 10.5194/acp-10-4491-2010 CrossRefGoogle Scholar
  64. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  65. Renault L, Dewitte B, Falvey M, Garreaud R, Echevin V, Bonjean F (2009) Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007). J Geophys Res 114:C08006. doi: 10.1029/2008JC005083 Google Scholar
  66. Renault L, Dewitte B, Marchesiello P, Illig S, Echevin V, Cambon G, Ramos M, Astudillo O, Minnis P, Ayers JK (2012) Upwelling response to atmospheric coastal jets off central Chile: a modeling study of the October 2000 event. J Geophys Res 117:C02030. doi: 10.1029/2011JC007446 Google Scholar
  67. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413. doi: 10.1175/2008JPO3881.1 CrossRefGoogle Scholar
  68. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi: 10.1175/JCLI3824.1 CrossRefGoogle Scholar
  69. Sepulchre P, Sloan LC, Snyder M, Fiechter J (2009) Impacts of Andean uplift on the Humboldt Current system: a climate model sensitivity study. Paleoceanography 24:PA4215. doi: 10.1029/2008PA001668 CrossRefGoogle Scholar
  70. Small J, DeSzoeke SP, Xie S-P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Ocean 45:274–319CrossRefGoogle Scholar
  71. Snyder MA, Bell JL, Sloan LC, Duffy PB, Govindasamy B (2002) Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys Res Lett 29:1514. doi: 10.1029/2001GL014431 CrossRefGoogle Scholar
  72. Snyder MA, Sloan LC, Diffenbaugh NS, Bell JL (2003) Future climate change and upwelling in the California Current. Geophys Res Lett 30:1823. doi: 10.1029/2003GL017647 CrossRefGoogle Scholar
  73. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Doney SC, Gehlen M, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005CrossRefGoogle Scholar
  74. Strub PT, Mesias JM, Montecino V, Rutllant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, NY, pp 273–314Google Scholar
  75. Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC-AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi: 10.1029/2006GL028164 CrossRefGoogle Scholar
  76. Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J Clim 20:3434–3451CrossRefGoogle Scholar
  77. Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706CrossRefGoogle Scholar
  78. Takahashi K, Martínez AG, Mosquera-Vásquez K (2013) The very strong 1925–1926 El Niño in the far eastern Pacific, revisited. Clim Dyn (submitted)Google Scholar
  79. Tokinaga H, Xie S-P (2011) Wave and anemometer-based sea-surface wind (WASWind) for climate change analysis. J Clim 24:267–285CrossRefGoogle Scholar
  80. Tokinaga H, Xie S-P, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012a) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening. J Clim 25:1689–1710. doi: 10.1175/JCLI-D-11-00263.1 CrossRefGoogle Scholar
  81. Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012b) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443. doi: 10.1038/nature11576 CrossRefGoogle Scholar
  82. Vargas G, Pantoja S, Rutllant J, Lange C, Ortlieb L (2007) Enhancement of coastal upwelling and interdecadal ENSO-like variability in the Peru–Chile Current since late 19th century. Geophys Res Lett 34:L13607. doi: 10.1029/2006GL028812 CrossRefGoogle Scholar
  83. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical Pacific circulation. J Clim 20:4316–4340. doi: 10.1175/JCLI4258.1 CrossRefGoogle Scholar
  84. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 327:216–219. doi: 10.1038/nature04744 Google Scholar
  85. Winant CD, Dorman C, Friehe C, Beardsley R (1988) The marine layer off northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–3605CrossRefGoogle Scholar
  86. Wyant MC et al (2010) The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmos Chem Phys 10:4757–4774. doi: 10.5194/acp-10-4757-2010 CrossRefGoogle Scholar
  87. Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  88. Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350CrossRefGoogle Scholar
  89. Xu H, Wang Y, Xie S-P (2004) Effects of the Andes on eastern Pacific climate: a regional atmospheric model study. J Clim 17:589–602CrossRefGoogle Scholar
  90. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali Belmadani
    • 1
    • 2
    • 3
  • Vincent Echevin
    • 1
  • Francis Codron
    • 4
  • Ken Takahashi
    • 5
  • Clémentine Junquas
    • 5
    • 6
  1. 1.Laboratoire d’Océanographie et du Climat, Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD), Institut Pierre-Simon Laplace (IPSL)Université Pierre et Marie Curie (UPMC)ParisFrance
  2. 2.International Pacific Research Center (IPRC), School of Ocean and Earth Science and Technology (SOEST)University of Hawaii at ManoaHonoluluUSA
  3. 3.Department of Geophysics (DGEO), Faculty of Physical and Mathematical Sciences (FCFM)Universidad de Concepcion (UdeC)ConcepciónChile
  4. 4.Laboratoire de Météorologie Dynamique (LMD), IPSLUPMCParisFrance
  5. 5.Instituto Geofisico del Peru (IGP)LimaPeru
  6. 6.IRD/UJF-Grenoble 1/CNRS/G-INP, LTHE UMR 5564GrenobleFrance

Personalised recommendations