Climate Dynamics

, Volume 43, Issue 7–8, pp 1811–1827 | Cite as

Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs

  • Jong-Yeon Park
  • Jong-Seong Kug
  • Hyodae Seo
  • Jürgen Bader
Article

Abstract

The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.

Keywords

ENSO Tropical mean climate Biological feedback 

References

  1. Alexander M, Scott J (2002) The influence of ENSO on air–sea interaction in the Atlantic. Geophys Res Lett 29(14). doi:10.1029/2001gl014347
  2. An SI, Jin F (2004) Nonlinearity and Asymmetry of ENSO. J Climate 17(12):2399–2412. doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2 Google Scholar
  3. An SI, Kug JS, Ham YG, Kang IS (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21(1):3–21. doi:10.1175/2007jcli1500.1 CrossRefGoogle Scholar
  4. Anderson WG, Gnanadesikan A, Hallberg R, Dunne J, Samuels BL (2007) Impact of ocean color on the maintenance of the Pacific Cold Tongue. Geophys Res Lett 34(11). doi:10.1029/2007gl030100
  5. Anderson W, Gnanadesikan A, Wittenberg A (2009) Regional impacts of ocean color on tropical Pacific variability. Ocean Science 5(3):313–327CrossRefGoogle Scholar
  6. Ballabrera-Poy J, Murtugudde R, Zhang RH, Busalacchi AJ (2007) Coupled ocean-atmosphere response to seasonal modulation of ocean color: impact on interannual climate simulations in the tropical Pacific. J Clim 20(2):353–374. doi:10.1175/jcli3958.1 CrossRefGoogle Scholar
  7. Behrenfeld MJ et al (2001) Biospheric primary production during an ENSO transition. Science 291(5513):2594–2597CrossRefGoogle Scholar
  8. Bretherton CS, Sobel AH (2003) The Gill model and the weak temperature gradient approximation. J Atmos Sci 60(2):451–460. doi:10.1175/1520-0469(2003)060<0451:tgmatw>2.0.co;2 CrossRefGoogle Scholar
  9. Campbell JW (1995) The lognormal distribution as a model for bio-optical variability in the sea. J Geophys Res 100(C7):13237–13254Google Scholar
  10. Chavez FP, Strutton PG, Friederich CE, Feely RA, Feldman GC, Foley DC, McPhaden MJ (1999) Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Nino. Science 286(5447):2126–2131CrossRefGoogle Scholar
  11. Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J Clim 15(18):2616–2631. doi:10.1175/1520-0442(2002)015<2616:tttvcb>2.0.co;2 CrossRefGoogle Scholar
  12. Dunne JP, Murray JW, Aufdenkampe AK, Blain S, Rodier M (1999) Silicon-nitrogen coupling in the equatorial Pacific upwelling zone. Global Biogeochem Cycles 13(3):715–726. doi:10.1029/1999gb900031 CrossRefGoogle Scholar
  13. Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL (2005) Empirical and mechanistic models for the particle export ratio. Global Biogeochem Cycle 19(4). doi:10.1029/2004gb002390
  14. Esaias WE et al (1998) An overview of MODIS capabilities for ocean science observations. IEEE Trans Geosci Remote Sens 36(4):1250–1265CrossRefGoogle Scholar
  15. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240CrossRefGoogle Scholar
  16. Geider RJ, MacIntyre HL, Kana TM (1996) A dynamic model of photoadaptation in phytoplankton. Limnol Oceanogr 41(1):1–15CrossRefGoogle Scholar
  17. Gildor H, Naik NH (2005) Evaluating the effect of interannual variations of surface chlorophyll on upper ocean temperature. J Geophys Res 110(C7). doi:10.1029/2004jc002779
  18. Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106(D17):20255–20273. doi:10.1029/2000jd000053 Google Scholar
  19. Gnanadesikan A, Anderson WG (2009) Ocean water clarity and the ocean general circulation in a coupled climate model. J Phys Ocean 39(2):314–332. doi:10.1175/2008jpo3935.1 CrossRefGoogle Scholar
  20. Gnanadesikan A, Dunne JP, John J (2011) What ocean biogeochemical models can tell us about bottom-up control of ecosystem variability. ICES J Mar Sci 68(6):1030–1044. doi:10.1093/icesjms/fsr098 CrossRefGoogle Scholar
  21. Griffies SM, Schmidt M, Herzfeld M (2009) Elements of mom4p1. GFDL Ocean Group Tech Rep 6:444Google Scholar
  22. Ham Y-G, Kug J-S (2012) How well do current climate models simulate two-types of El Nino? Clim Dyn 39:383–398. doi:10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  23. Henson SA, Dunne JP, Sarmiento JL (2009) Decadal variability in North Atlantic phytoplankton blooms. J Geophys Res 114:C04013. doi:10.1029/2008jc005139 Google Scholar
  24. Jang Y-S, Kim D, Kim Y-H, Kim D-H, Watanabe M, Jin F-F, Kug J-S (2013) Simulation of two types of El Nino from different convective parameters. Asia-Pacific J Atmos Sci 49(2):193–199. doi:10.1007/s13143-013-0020-3
  25. Jochum M, Yeager S, Lindsay K, Moore K, Murtugudde R (2010) Quantification of the feedback between phytoplankton and ENSO in the community climate system model. J Clim 23(11):2916–2925. doi:10.1175/2010jcli3254.1 CrossRefGoogle Scholar
  26. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  27. Kang I-S, Kug J-S (2002) El Nino and La Nina sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophy Res 107(D19):4372Google Scholar
  28. Kang IS, Kug JS, An SI, Jin FF (2004) A near-annual Pacific Ocean basin mode. J Clim 17(12):2478–2488. doi:10.1175/1520-0442(2004)017<2478:anpobm>2.0.co;2 CrossRefGoogle Scholar
  29. Kim D, Jang Y-S, Kim D-H, Kim Y-H, Watanabe M, Jin F-F, Kug J-S (2011) El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J Geophys Res 116:D22112. doi:10.1029/2011JD016526 Google Scholar
  30. Kug J-S, Ham Y-G, Lee J-Y, Jin F-F (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7. doi:10.1088/1748-9326/7/3/039502
  31. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Report on National Centre for Atmospheric Research, Boulder, COGoogle Scholar
  32. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, Andre JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516. doi:10.1007/s00382-006-0200-2 CrossRefGoogle Scholar
  33. Lewis MR, Carr ME, Feldman GC, Esaias W, McClain C (1990) Influence of penetrating solar-radiation on the heat-budget of the equatorial Pacific-ocean. Nature 347(6293):543–545CrossRefGoogle Scholar
  34. Lin PF, Liu HL, Zhang XH (2007) Sensitivity of the upper ocean temperature and circulation in the equatorial pacific to solar radiation penetration due to phytoplankton. Adv Atmos Sci 24:765–780CrossRefGoogle Scholar
  35. Lin PF, Liu HL, Zhang XH (2008) Effect of chlorophyll-a horizontal distribution on upper ocean temperature in the central and eastern equatorial Pacific. Adv Atmos Sci 25:585–596CrossRefGoogle Scholar
  36. Lin PF, Liu HL, Yu YQ, Zhang XH (2011) Response of Sea surface temperature to chlorophyll-a concentration in the tropical Pacific: annual mean, seasonal cycle and interannual variability. Adv Atmos Sci 28:492–510CrossRefGoogle Scholar
  37. Loptien U, Eden C, Timmermann A, Dietze H (2009) Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model. J Geophys Res 114:C06011. doi:10.1029/2008jc004936 Google Scholar
  38. Maes C, Sudre J, Garcon V (2010) Detection of the eastern edge of the equatorial pacific warm pool using satellite-based ocean color observations. Sola 6:129–132. doi:10.2151/sola.2010-033 CrossRefGoogle Scholar
  39. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32:L05603CrossRefGoogle Scholar
  40. Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371(6493):123–129. doi:10.1038/371123a0 CrossRefGoogle Scholar
  41. Marzeion B, Timmermann A, Murtugudde R, Jin FF (2005) Biophysical feedbacks in the tropical Pacific. J Clim 18(1):58–70. doi:10.1175/jcli3261.1 CrossRefGoogle Scholar
  42. McClain CR, Cleave ML, Feldman GC, Gregg WW, Hooker SB, Kuring N (1998) Science quality SeaWiFS data for global biosphere research. Sea Technol 39(9):10–16Google Scholar
  43. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters). J Geophys Res 93(C9):10749–10768. doi:10.1029/JC093iC09p10749 Google Scholar
  44. Morel A, Berthon JF (1989) Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol Oceanogr 34(8):1545–1562CrossRefGoogle Scholar
  45. Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126(2):251–273CrossRefGoogle Scholar
  46. Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Clim 15(5):470–486. doi:10.1175/1520-0442(2002)015<0470:eoprot>2.0.co;2 CrossRefGoogle Scholar
  47. Nakamoto S, Kumar SP, Oberhuber JM, Muneyama K, Frouin R (2000) Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys Res Lett 27(6):747–750. doi:10.1029/1999gl002371 CrossRefGoogle Scholar
  48. Nakamoto S, Kumar SP, Oberhuber JM, Ishizaka J, Muneyama K, Frouin R (2001) Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys Res Lett 28(10):2021–2024. doi:10.1029/2000gl012494 CrossRefGoogle Scholar
  49. Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16(9):1337–1351. doi:10.1175/1520-0442-16.9.1337 CrossRefGoogle Scholar
  50. Park JY, Kug JS, Park J, Yeh SW, Jang CJ (2011) Variability of chlorophyll associated with El Niño-Southern Oscillation and its possible biological feedback in the equatorial Pacific. J Geophys Res 116:C10001. doi:10.1029/2011jc007056 CrossRefGoogle Scholar
  51. Park JY, Kug JS, Park YG (2012) A modeling study on bio-physical processes associated with ENSO. Prog Oceanogr (submitted)Google Scholar
  52. Patara L, Vichi M, Masina S, Fogli PG, Manzini E (2012) Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Clim Dyn 39(7–8):1951–1968. doi:10.1007/s00382-012-1300-9 CrossRefGoogle Scholar
  53. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7(6):952–956CrossRefGoogle Scholar
  54. Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: A synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res 106(C2):2363–2386Google Scholar
  55. Radenac MH, Leger F, Singh A, Delcroix T (2012) Sea surface chlorophyll signature in the tropical Pacific during eastern and central Pacific ENSO events. J Geophys Res 117. doi:10.1029/2011jc007841
  56. Runge JA, Plourde S, Joly P, Niehoff B, Durbin E (2006) Characteristics of egg production of the planktonic copepod, Calanus finmarchicus, on Georges Bank: 1994–1999. Deep-Sea Res Part II 53(23–24):2618–2631. doi:10.1016/j.dsr2.2006.08.010 CrossRefGoogle Scholar
  57. Sathyendranath S, Gouveia AD, Shetye SR, Ravindran P, Platt T (1991) Biological control of surface temperature in the Arabian Sea. Nature 349(6304):54–56. doi:10.1038/349054a0 CrossRefGoogle Scholar
  58. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007jcli2100.1 CrossRefGoogle Scholar
  59. Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Clim 15(18):2702–2706. doi:10.1175/1520-0442(2002)015<2702:tesitt>2.0.co;2 CrossRefGoogle Scholar
  60. Strutton PG, Chavez FP (2004) Biological heating in the equatorial Pacific: observed variability and potential for real-time calculation. J Clim 17(5):1097–1109. doi:10.1175/1520-0442(2004)017<1097:bhitep>2.0.co;2 CrossRefGoogle Scholar
  61. Su J, Zhang R, Li T, Rong X, Kug J-S, Hong C-C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617CrossRefGoogle Scholar
  62. Sweeney C, Gnanadesikan A, Griffies SM, Harrison MJ, Rosati AJ, Samuels BL (2005) Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J Phys Ocean 35(6):1103–1119. doi:10.1175/jpo2740.1 CrossRefGoogle Scholar
  63. Timmermann A, Jin FF (2002) Phytoplankton influences on tropical climate. Geophys Res Lett 29(23). doi:10.1029/2002gl015434
  64. Turner AG, Joshi M, Robertson ES, Woolnough SJ (2011) The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM. Clim Dyn 1–16. doi:10.1007/s00382-011-1254-3
  65. Watanabe M, Kug J-S, Jin F-F, Collins M, Ohba M, Wittenburg A (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett 39:L20703. doi:10.1029/2012GL053305 CrossRefGoogle Scholar
  66. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19(16):3973–3987. doi:10.1175/jcli3828.1 CrossRefGoogle Scholar
  67. Wilson C, Coles VJ (2005) Global climatological relationships between satellite biological and physical observations and upper ocean properties. J Geophys Res 110(C10). doi:10.1029/2004jc002724
  68. Yoder JA, Kennelly MA (2003) Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global Biogeochem Cycles 17(4):1112. doi:10.1029/2002gb001942 CrossRefGoogle Scholar
  69. Zhang CD (1993) Large-scale variability of atmospheric deep convection in relation to sea-surface temperature in the tropics. J Clim 6(10):1898–1913CrossRefGoogle Scholar
  70. Zhang RH, Busalacchi AJ, Wang XJ, Ballabrera-Poy J, Murtugudde RG, Hackert EC, Chen D (2009) Role of ocean biology-induced climate feedback in the modulation of E1 Niño-Southern Oscillation. Geophys Res Lett 36. doi:10.1029/2008gl036568

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jong-Yeon Park
    • 1
    • 2
  • Jong-Seong Kug
    • 3
  • Hyodae Seo
    • 4
  • Jürgen Bader
    • 1
    • 5
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.International Max Planck Research School On Earth System ModellingHamburgGermany
  3. 3.Korea Institute of Ocean Science and TechnologyAnsan, SeoulSouth Korea
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations