Climate Dynamics

, Volume 43, Issue 1–2, pp 289–303 | Cite as

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions

Article

Abstract

Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understanding Arctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealised single-column model experiment of the formation of Arctic air reveals that this bias is linked to inadequate mixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.

Keywords

Arctic Boundary layer Turbulence Temperature inversion 

Notes

Acknowledgments

We are grateful to Tiina Kippeläinen for the inspiration to parts of this study, Anthony del Genio for information on the GISS model, Tongwen Wu for information on the BCC-CSM-1-1 model, Suvarchal Kumar Cheedela for developing and helping with the single-column version of ECHAM6 and Bjorn Stevens for helpful comments and discussions. Comments by Dirk Notz helped to improve the clarity of the manuscript. We are grateful to two anonymous reviewers for concise and helpful comments that enabled us to substantially improve the present paper. We thank the investigators involved in the collection and processing of SHEBA and ARM observations for making those datasets available. ERA40 and ERA-interim reanalyses data have been obtained from the ECMWF data server. The HadCRUT3v dataset has been provided by the Climatic Research Unit at the University of East Anglia. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP5, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. Plots in this paper have been generated using NCL (UCAR/NCAR/CISL/VETS 2012) provided by NCAR. Brian Medeiros acknowledges support by the Office of Science (BER), U.S. Department of Energy. NCAR is sponsored by the National Science Foundation.

References

  1. Abbot DS, Tziperman E (2008) A high-latitude convective cloud feedback and equable climates. Q J Roy Met Soc 134(630):165–185. doi: 10.1002/qj.211 CrossRefGoogle Scholar
  2. ACIA (2004) Impacts of a warming Arctic–Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  3. Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near ice saturation. J Geophys Res Oceans 107(C10):SHE 8–1–SHE 8–15. doi: 10.1029/2000JC000411 CrossRefGoogle Scholar
  4. Barrett A (2012) Why can’t models simulate mixed-phase clouds correctly? PhD thesis, University of ReadingGoogle Scholar
  5. Bergeron T (1935) On the physics of clouds and precipitation. In: Proceedings of 5th Assembly, UGGI, Lisbon, pp 156–178Google Scholar
  6. Bintanja R, Graversen R, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat Geosci 4:758–761CrossRefGoogle Scholar
  7. Cesana G, Kay J, Chepfer H, English J, de Boer G (2012) Ubiquitous low-level liquid-containing Arctic clouds: new observations and climate model constraints from CALIPSO-GOCCP. Geophys Res Lett 39(20):L20,804Google Scholar
  8. Curry J (1983) On the formation of continental polar air. J Atmos Sci 40:2278–2292CrossRefGoogle Scholar
  9. Curry J (1986) Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J Atmos Sci 43(1):90–106CrossRefGoogle Scholar
  10. Cuxart J, Holtslag A, Beare R, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R et al (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-layer Met 118(2):273–303CrossRefGoogle Scholar
  11. Devasthale A, Sedlar J, Tjernström M (2011) Characteristics of water-vapour inversions observed over the arctic by atmospheric infrared sounder (airs) and radiosondes. Atmos Chem Phys 11:9813–9823CrossRefGoogle Scholar
  12. Donner L, Wyman B, Hemler R, Horowitz L, Ming Y, Zhao M, Golaz J, Ginoux P, Lin S, Schwarzkopf M et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519CrossRefGoogle Scholar
  13. Findeisen W (1938) Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteor Z 55:121–133Google Scholar
  14. Francis JA, Vavrus SJ (2012) Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06801. doi: 10.1029/2012GL051000 CrossRefGoogle Scholar
  15. Fridlind AM, Van Diedenhoven B, Ackerman AS, Avramov A, Mrowiec A, Morrison H, Zuidema P, Shupe MD (2012) A fire-ace/sheba case study of mixed-phase arctic boundary layer clouds: entrainment rate limitations on rapid primary ice nucleation processes. J Atmos Sci 69(1):365–389CrossRefGoogle Scholar
  16. Gent P, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991CrossRefGoogle Scholar
  17. Gettelman A, Walden V, Miloshevich L, Roth W, Halter B (2006) Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J Geophys Res 111(D9):D09S13Google Scholar
  18. Held I (1978) The tropospheric lapse rate and climatic sensitivity: experiments with a two-level atmospheric model. J Atmos Sci 35:2083–2098CrossRefGoogle Scholar
  19. Honda M, Inoue J, Yamane S (2009) Influence of low arctic sea-ice minima on anomalously cold eurasian winters. Geophys Res Lett 36(8):L08,707. doi: 10.1029/2008GL037079 CrossRefGoogle Scholar
  20. Hourdin F, Grandpeix J, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I et al (2012) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. doi: 10.1007/s00382-012-1343-y
  21. Jones P, New M, Parker D, Martin S, Rigor I (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2):173–199CrossRefGoogle Scholar
  22. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031CrossRefGoogle Scholar
  23. Klein SA, McCoy RB, Morrison H, Ackerman AS, Avramov A, de~Boer G, Chen M, Cole JN, Del Genio AD, Falk M et al (2009) Intercomparison of model simulations of mixed-phase clouds observed during the arm mixed-phase arctic cloud experiment. i: Single-layer cloud. Quart J R Meteorol Soc 135(641):979–1002CrossRefGoogle Scholar
  24. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12(8):557–572CrossRefGoogle Scholar
  25. Manabe S, Wetherald R (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15CrossRefGoogle Scholar
  26. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D et al (2012) Tuning the climate of a global model. J Adv Model Earth Sys 4:M00A01. doi: 10.1029/2012MS000154 Google Scholar
  27. Medeiros B, Deser C, Tomas R, Kay J (2011) Arctic inversion strength in climate models. J Clim 24:4733–4740CrossRefGoogle Scholar
  28. Météo France (2009) ARPEGE-Climat V5.1 algorithmic documentation. Tech. Rep., Météo France/CNRMGoogle Scholar
  29. Morrison H, de Boer G, Feingold G, Harrington J, Shupe M, Sulia K (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 4:11–17. doi: 10.1038/ngeo1332 Google Scholar
  30. Overland J, Guest P (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96(C3):4651–4662CrossRefGoogle Scholar
  31. Pavelsky T, Boé J, Hall A, Fetzer E (2011) Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Clim Dyn 36(5):945–955CrossRefGoogle Scholar
  32. Persson P, Uttal T, Intrieri J, Fairall C, Andreas E, Guest P (1999) Observations of large thermal transitions during the arctic night from a suite of sensors at sheba. In: Third symposium on integrated observing systems America Meteorological Society, Dallas, TXGoogle Scholar
  33. Persson P, Fairall C, Andreas E, Guest P, Perovich D (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(10.1029)Google Scholar
  34. Pithan F, Mauritsen T (2013) Statistical artifacts in ’Current GCMs’ unrealistic negative feedback in the Arctic’ by Boé et al. J Clim. doi: 10.1175/JCLI-D-12-00331.1
  35. Rotstayn L, Ryan B, Katzfey J (2000) A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon Wea Rev 128(4):1070–1088CrossRefGoogle Scholar
  36. Schmidt G, Ruedy R, Hansen J, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y et al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192CrossRefGoogle Scholar
  37. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Giuseppe Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Climate 24(16):4368–4384CrossRefGoogle Scholar
  38. Serreze M, Schnell R, Kahl J (1992) Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J Clim 5(6):615–629CrossRefGoogle Scholar
  39. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  40. Solomon A, Shupe MD, Persson POG, Morrison H, Yamaguchi T, Feingold G, Caldwell PM, deBoer G (2013) The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J Atmos Sci (under review)Google Scholar
  41. Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29(2):131–156CrossRefGoogle Scholar
  42. Sterk H, Steeneveld G, Holtslag A (2013) The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over arctic sea ice. J Geophys Res Atmos 118:1199–1217CrossRefGoogle Scholar
  43. Stevens B, Crueger T, Esch M, Giorgetta M, Mauritsen T, Rast S, Schmidt H, Bader J, Block K, Brokopf R et al (2013) The atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst. doi: 10.1002/jame.20015
  44. Stramler K, Del Genio A, Rossow W (2011) Synoptically driven Arctic winter states. J Clim 24(6):1747–1762CrossRefGoogle Scholar
  45. Svensson G, Karlsson J (2011) On the Arctic wintertime climate in global climate models. J Clim 24(22):5757–5771CrossRefGoogle Scholar
  46. Sverdrup H (1933) Meteorology, The Norwegian North Polar expedition with the ’Maud’ 1918–1925, scientific results, vol II. Geophysical Institute, BergenGoogle Scholar
  47. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485CrossRefGoogle Scholar
  48. Tjernström M (2012) The Arctic Ocean boundary layer: Interactions with the sea-ice surface and clouds. In: ECMWF GABLS workshop on diurnal cycles and the stable boundary layer, 7-10 November 2011, European Centre for Medium-Range Weather ForecastsGoogle Scholar
  49. Tjernström M, Graversen R (2009) The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart J R Meteorol Soc 135(639):431–443CrossRefGoogle Scholar
  50. Turner JK, Gyakum JR (2011) The development of Arctic Air Masses in Northwest Canada and their behaviour in a warming climate. J Clim 24:4818–4633. doi: 10.1175/2011JCLI3855.1 Google Scholar
  51. UCAR/NCAR/CISL/VETS (2012) The NCAR command language (Version 6.0.0) [Software]. doi: 10.5065/D6WD3XH5
  52. Uppala S, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  53. Volodin E, Dianskii N, Gusev A (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414–431CrossRefGoogle Scholar
  54. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872CrossRefGoogle Scholar
  55. Wegener A (1911) Thermodynamik der Atmosphäre. JA Barth, LeipzigGoogle Scholar
  56. Wexler H (1936) Cooling in the lower atmosphere and the structure of polar continental air. Mon Wea Rev 64:122–136CrossRefGoogle Scholar
  57. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34(1):123–147CrossRefGoogle Scholar
  58. Xie S, McCoy R, Klein S, Cederwall R, Wiscombe W, Jensen M, Johnson K, Clothiaux E, Gaustad K, Long C et al (2010) CLOUDS AND MORE: ARM climate modeling best estimate data. Bull Am Meteorol Soc 91(1):13–20CrossRefGoogle Scholar
  59. Yukimoto S, Adachi Y, Hosaka M (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J Meteorol Soc Jpn 90:23–64CrossRefGoogle Scholar
  60. Zhang Y, Seidel D, Golaz J, Deser C, Tomas R (2011) Climatological characteristics of Arctic and Antarctic surface-based inversions. J Clim 24(19):5167–5186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felix Pithan
    • 1
    • 2
  • Brian Medeiros
    • 3
  • Thorsten Mauritsen
    • 1
  1. 1.Max-Planck-Institute for MeteorologyHamburgGermany
  2. 2.International Max Planck Research School on Earth System ModellingHamburgGermany
  3. 3.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations