Climate Dynamics

, Volume 43, Issue 5–6, pp 1357–1379 | Cite as

Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades

  • Weiqing HanEmail author
  • Gerald A. Meehl
  • Aixue Hu
  • Michael A. Alexander
  • Toshio Yamagata
  • Dongliang Yuan
  • Masayoshi Ishii
  • Philip Pegion
  • Jian Zheng
  • Benjamin D. Hamlington
  • Xiao-Wei Quan
  • Robert R. Leben


Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.


Decadal Multidecadal Sea level Pacific decadal variability Indian Ocean warming 



We thank Dr. Clara Deser for reading the earlier version of this manuscript and providing helpful comments, and Dr. Adam Phillips for providing the CAM3 TOGA experiment results. Appreciation also goes to Dr. Martin Hoerling for the NSIPP model experiments, and Dr. James McWilliams for stimulating discussions at the earlier stage of this work. W.H. is supported by NSF CAREER award OCE 0847605. Portions of this study were supported by the Office of Science (BER), US Department of Energy, Cooperative Agreement No. DE-FC02-97ER62402, and the National Science Foundation. NCAR is sponsored by the National Science Foundation. D.Y. is supported by China 973 project. We thank NCAR CISL for computational support.


  1. Alexander MA (2010) Extratropical air–sea interaction, SST variability and the pacific decadal oscillation (PDO). In: Sun D, Bryan F (eds) Climate dynamics: why does climate vary. AGU Monograph #189, Washington, DC, pp 123–148Google Scholar
  2. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  3. Atlas R, Ardizzone J, Hoffman RN (2008) Application of satellite surface wind data to ocean wind analysis. In: Proceedings of SPIE, vol 7087, 70870B. doi: 10.1117/12.795371
  4. Balmaseda MA, Vidard A, Anderson DL (2008) The ECMWF ocean analysis system: ORA-S3. Mon Wea Rev 136:3018–3034CrossRefGoogle Scholar
  5. Becker M, Meyssignac B, Letetrel C, Llovel W, Cazenave A, Delcroix T (2012) Sea level variations at tropical Pacific islands since 1950, Global Planet. Change 80–81:85–98. doi: 10.1016/j.gloplacha.2011.09.004 Google Scholar
  6. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J et al (2007) Observations: oceanic climate change and sea level, ch5. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432Google Scholar
  7. Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res 110:C09006. doi: 10.1029/2004JC002817 Google Scholar
  8. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  9. Church JA, Gregory JM, White NJ, Platten SM, Mitrovica JX (2011) Understanding and projecting sea level change. Oceanography 24(2):130–143CrossRefGoogle Scholar
  10. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 70:2122–2143CrossRefGoogle Scholar
  11. Copsey D, Sutton R, Knight JR (2006) Recent trends in sea level pressure in the Indian Ocean region. Geophys Res Lett 33:L19712. doi: 10.1029/2006GL027175 CrossRefGoogle Scholar
  12. Dai A (2012) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn. doi: 10.1007/s00382-012-1446-5 Google Scholar
  13. Deser C, Phillips AS (2006) Simulation of the 1976/1977 climate transition over the North Pacific: sensitivity to tropical forcing. J Clim 19:6170–6180CrossRefGoogle Scholar
  14. Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413. doi: 10.1175/2008JCLI2453.1 CrossRefGoogle Scholar
  15. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and North Pacific during boreal winter since 1900. J Clim 17:3109–3124CrossRefGoogle Scholar
  16. Deser C, Capotondi A, Saravanan R, Phillips AS (2006) Tropical Pacific and Atlantic climate variability in CCSM3. J Clim 19:2451–2481CrossRefGoogle Scholar
  17. Deser C et al (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651CrossRefGoogle Scholar
  18. Du Y, Xie SP (2008) Role of atmospheric adjustments in the TIO warming during the 20th century in climate models. Geophys Res Lett 35:L08712. doi: 10.1029/2008GL033631 Google Scholar
  19. Ducet N, Le Traon PY, Reverdin G (2000) Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1/2. J Geophys Res 105:19477–19498Google Scholar
  20. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022CrossRefGoogle Scholar
  21. Feng M, McPhaden MJ, Lee T (2010) Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys Res Lett 37:L09606. doi: 10.1029/2010GL042796 CrossRefGoogle Scholar
  22. Folland C, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29:1643. doi: 10.1029/2001GL014201 CrossRefGoogle Scholar
  23. Gadgil S, Joseph PV, Joshi NV (1984) Ocean-atmosphere coupling over monsoon regions. Nature 312:141–143CrossRefGoogle Scholar
  24. Garreaud R, Battisti D (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123CrossRefGoogle Scholar
  25. Goddard L, Baethgen W, Kirtman B, Meehl GA (2009) The urgent need for improved models and predictions. EOS 90:343CrossRefGoogle Scholar
  26. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238:657–659CrossRefGoogle Scholar
  27. Hack JJ, Caron JM, Danabasoglu G, Oleson KW, Bitz C, Truesdale J (2006) CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J Clim 19:2267–2289CrossRefGoogle Scholar
  28. Hamlington BD, Leben R, Nerem RS, Han W, Kim KY (2011) Reconstructing sea level using cyclostationary empirical orthogonal functions. J Geophys Res 116. doi: 10.1029/2011JC007529
  29. Han W (2005) Origins and dynamics of the 90-day and 30–60 day variations in the equatorial Indian Ocean. J Phys Oceanogr 35:708–728CrossRefGoogle Scholar
  30. Han W, Webster PJ, Lin J, Fu R, Yuan D, Hu A (2008) Dynamics of intraseasonal sea level and thermocline variability in the equatorial Atlantic during 2002–2003. J Phys Oceanogr 38:945–967CrossRefGoogle Scholar
  31. Han W, Meehl GA et al (2010) Patterns of Indian Ocean sea level change in a warming climate. Nat Geosci. doi: 10.1038/NGEO901 Google Scholar
  32. Hoerling M, Hurrell J, Kumar A, Terray L, Eischeid J, Pegion P, Zhang T, Quan X, Xu T (2011) On North American decadal climate for 2011–2020. J Clim 24. doi: 10.1175/2011JCLI4137.1
  33. Huang BH, Kinter JL (2002) The interannual variability in the TIO and its relations to El Nino-Southern Oscillation. J Geophys Res 107:3199. doi: 10.1029/2001JC001278 CrossRefGoogle Scholar
  34. Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2162–2183CrossRefGoogle Scholar
  35. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153CrossRefGoogle Scholar
  36. Hurrell JW, Meehl GA, Bader D, Delworth T, Kirtman B, Wielicki B (2009) A unified approach to climate system prediction. Bull Amer Meteor Soc 90:1819–1832Google Scholar
  37. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  38. Johnson NC, Xie SP (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3(12):842–845CrossRefGoogle Scholar
  39. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  40. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589Google Scholar
  41. Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746CrossRefGoogle Scholar
  42. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a Tropical Atmospheric Bridge. J. Climate 12:917–932CrossRefGoogle Scholar
  43. Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1914–1930Google Scholar
  44. Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO Global Snthesis. J Phys Oceanogr 37:313–337CrossRefGoogle Scholar
  45. Kumar A, Hoerling MP (1998) On the specification of regional SSTs in AGCM simulations. J Geophy Res 103:8901–8907Google Scholar
  46. Kumar A, Hoerling MP (2003) The nature and causes for the delayed atmospheric response to El Nino. J Clim 16:1391–1403CrossRefGoogle Scholar
  47. Kumar K, Hoerling MP, Rajagopalan B (2005) Advancing Indian monsoon rainfall predictions. Geophys Res Lett 32:L08704. doi: 10.1029/2004GL021979 Google Scholar
  48. Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of Tropical Atlantic SST influence on North American precipitation variability. J Clim 23. doi: 10.1175/2010JCLI3172.1
  49. Lee T, McPhaden MJ (2008) Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett 35:L01605. doi: 10.1029/2007GL032419 Google Scholar
  50. Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24(2):122–129. doi: 10.5670/oceanog.2011.32 CrossRefGoogle Scholar
  51. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  52. Liu Z (2012) Dynamics of Interdecadal climate variability: an historical perspective. J Clim 25:1963–1995. doi: 10.1175/2011JCLI3980.1 CrossRefGoogle Scholar
  53. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. doi: 10.1029/2005RG000172
  54. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte-Carlo Techniques. Mon Wea Rev 111(1):46–59CrossRefGoogle Scholar
  55. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/48 global ocean sea-ice hindcast. Ocean Dyn 59:433–449CrossRefGoogle Scholar
  56. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109:18701–18706Google Scholar
  57. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  58. McCreary JP (1981) A linear stratified ocean model of the coastal undercurrent. Philos Trans R Soc Lond 302A:385–413CrossRefGoogle Scholar
  59. McGregor S, Sen Gupta A, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea-level trend. J Clim 25:8164–8176CrossRefGoogle Scholar
  60. McPhaden MJ, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415:603–608CrossRefGoogle Scholar
  61. McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31:L18301. doi: 10.1029/2004GL020727 CrossRefGoogle Scholar
  62. Meehl GA, Goddard L et al (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1484Google Scholar
  63. Meehl GA, Hu A (2006) Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Clim 19:1605–1623CrossRefGoogle Scholar
  64. Merrifield MA (2011) A shift in western tropical pacific sea level trends during the 1990s. J Clim 24:4126–4138CrossRefGoogle Scholar
  65. Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38:L21605. doi: 10.1029/2011GL049576 Google Scholar
  66. Merrifield MA, Thompson PR, Lander M (2012) Multidecaal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett 39:L13602. doi: 10.1029/2012GL052032 Google Scholar
  67. Meyssignac B, Salas y Melia D, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past Discuss 8:349–389Google Scholar
  68. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nature Geosci 2:471–478CrossRefGoogle Scholar
  69. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686CrossRefGoogle Scholar
  70. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446CrossRefGoogle Scholar
  71. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  72. Nicholls RJ (2011) Planning for the impacts of sea level rise. Oceanography 24(2):144–157. doi: 10.5670/oceanog.2011.34 CrossRefGoogle Scholar
  73. Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn. doi: 10.1007/s00382-012-1463-4 Google Scholar
  74. Nigam S, Shen HS (1993) Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J Clim 6:657–676CrossRefGoogle Scholar
  75. Okumura YM, Ohba M, Deser C (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829CrossRefGoogle Scholar
  76. Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26:247–272CrossRefGoogle Scholar
  77. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  78. Randall DA, Wood RA, Bony S et al (2007) Climate models and their evaluation, ch. 8. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  79. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469CrossRefGoogle Scholar
  80. Schneider N, Cornuelle B (2005) The forcing of the Pacific Decadal Oscillation. J Clim 18:4355–4373CrossRefGoogle Scholar
  81. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) Causes of long-term drought in the U.S. Great Plains. J Clim 17:485–503CrossRefGoogle Scholar
  82. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  83. Solomon A, Goddard L, Kumar A et al (2011) Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull Am Meteorol Soc. doi: 10.1175/2010BAMS2962.1 Google Scholar
  84. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  85. Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23:4429–4437CrossRefGoogle Scholar
  86. Tokinaga H, Xie SP (2011) Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J Clim 24:267–285CrossRefGoogle Scholar
  87. Trenary L, Han W (2013) Local and remote forcing of decadal sea level and thermocline depth variability in the South Indian Ocean. J Geophys Res Oceans 118. doi: 10.1029/2012JC008317
  88. Trenberth KE et al (2007) Surface and atmospheric climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  89. Vimont D (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J Clim 18:2080–2092CrossRefGoogle Scholar
  90. Waliser DE, Graham NE, Gautier C (1993) Comparison of the highly reflective cloud and outgoing longwave data sets for use in estimating tropical deep convection. J Clim 6:331–353CrossRefGoogle Scholar
  91. Wu R, Kirtman BP, Pegion K (2006) Local air–sea relationship in observations and model simulations. J Clim 19:4914–4932CrossRefGoogle Scholar
  92. Wunsch C, Ponte R, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5911CrossRefGoogle Scholar
  93. Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:864–878CrossRefGoogle Scholar
  94. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Nino. J Clim 22:730–747CrossRefGoogle Scholar
  95. Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39:L21701. doi: 10.1029/2012GL053240 Google Scholar
  96. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weiqing Han
    • 1
    Email author
  • Gerald A. Meehl
    • 2
  • Aixue Hu
    • 2
  • Michael A. Alexander
    • 3
  • Toshio Yamagata
    • 4
  • Dongliang Yuan
    • 5
  • Masayoshi Ishii
    • 6
  • Philip Pegion
    • 3
  • Jian Zheng
    • 1
    • 7
  • Benjamin D. Hamlington
    • 8
  • Xiao-Wei Quan
    • 3
  • Robert R. Leben
    • 8
  1. 1.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA
  2. 2.Climate and Global DivisionNational Center for Atmospheric ResearchBoulderUSA
  3. 3.Earth System Research LaboratoryNOAABoulderUSA
  4. 4.Application LaboratoryJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  5. 5.Institute of OceanologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  6. 6.Meteorological Research InstituteTsukubaJapan
  7. 7.Ocean University of ChinaQingdaoPeople’s Republic of China
  8. 8.Department of Aerospace Engineering Sciences, Colorado Center for Astrodynamics ResearchUniversity of ColoradoBoulderUSA

Personalised recommendations