Climate Dynamics

, Volume 43, Issue 1–2, pp 271–288 | Cite as

Stochastically-forced multidecadal variability in the North Atlantic: a model study

  • J. V. MeckingEmail author
  • N. S. Keenlyside
  • R. J. Greatbatch


Observations show a multidecadal signal in the North Atlantic ocean, but the underlying mechanism and cause of its timescale remain unknown. Previous studies have suggested that it may be driven by the North Atlantic Oscillation (NAO), which is the dominant pattern of winter atmospheric variability. To further address this issue, the global ocean general circulation model, Nucleus for European Modelling of the Ocean (NEMO), is driven using a 2,000 years long white noise forcing associated with the NAO. Focusing on key ocean circulation patterns, we show that the Atlantic Meridional Overturning Circulation (AMOC) and Sub-polar gyre (SPG) strength both have enhanced power at low frequencies but no dominant timescale, and thus provide no evidence for a oscillatory ocean-only mode of variability. Instead, both indices respond linearly to the NAO forcing, but with different response times. The variability of the AMOC at 30°N is strongly enhanced on timescales longer than 90 years, while that of the SPG strength starts increasing at 15 years. The different response characteristics are confirmed by constructing simple statistical models that show AMOC and SPG variability can be related to the NAO variability of the previous 53 and 10 winters, respectively. Alternatively, the AMOC and the SPG strength can be reconstructed with Auto-regressive (AR) models of order seven and five, respectively. Both statistical models reconstruct interannual and multidecadal AMOC variability well, while on the other hand, the AR(5) reconstruction of the SPG strength only captures multidecadal variability. Using these methods to reconstruct ocean variables can be useful for prediction and model intercomparision.


North Atlantic NAO Atlantic Multidecadal Variability Sub-polar gyre Stochastic OGCM 



We thank to two anonymous reviewers, and Mojib Latif for their helpful comments. The work was primarily supported by the Deutsches Forschungsgemeinschaft under the Emmy Noether Programm (Grant KE 1471/2-1). We would also acknowledge support from GEOMAR, the EU-THOR (No. GA212643) and EU-STEPS (PCIG10-GA-2011-304243) projects, and the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN) computing facility. GEOMAR TM Group and DRAKKAR consortium provided support with various modelling aspects.


  1. Ba J, Keenlyside NS, Park W, Latif M, Hawkins E, Ding H (2013) A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim Dyn pp 1–12. doi: 10.1007/s00382-012-1633-4
  2. Barnier B, Madec G, Penduff T, Molines J, Treguier A, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5):543–567. doi: 10.1007/s10236-006-0082-1 Google Scholar
  3. Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126CrossRefGoogle Scholar
  4. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10(1):1–82CrossRefGoogle Scholar
  5. Born A, Mignot J (2012) Dynamics of decadal variability in the atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn 39(1):461–474. doi: 10.1007/s00382-011-1180-4 CrossRefGoogle Scholar
  6. Chylek P, Folland C, Dijkstra H, Lesins G, Dubey M (2011) Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation. Geophys Res Lett 38(13):L13,704. doi: 10.1029/2011GL047501 CrossRefGoogle Scholar
  7. Curry R, McCartney M (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31(12):3374–3400CrossRefGoogle Scholar
  8. Delworth T, Greatbatch R (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13(9):1481–1495CrossRefGoogle Scholar
  9. Delworth T, Zeng F (2012) Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2. 1 climate model. Geophys Res Lett 39(13):L13,702. doi: 10.1029/2012GL052107 CrossRefGoogle Scholar
  10. Delworth T, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6(11):1993–2011CrossRefGoogle Scholar
  11. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38(3):241–295CrossRefGoogle Scholar
  12. Dickson R, Osborn T, Hurrell J, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arctic Ocean response to the North Atlantic Oscillation. J Clim 13(15):2671–2696. doi: 10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2 CrossRefGoogle Scholar
  13. Dijkstra H, Te Raa L, Schmeits M, Gerrits J (2006) On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn 56(1):36–50. doi: 10.1007/s10236-005-0043-0 CrossRefGoogle Scholar
  14. Dima M, Lohmann G (2007) A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J Clim 20(11):2706–2719. doi: 10.1175/JCLI4174.1 CrossRefGoogle Scholar
  15. Drinkwater K, Belgrano A, Borja A, Conversi A, Edwards M, Greene C, Ottersen G, Pershing A, Walker H (2003) The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. Geophys Monogr Am Geophys Union 134:211–234Google Scholar
  16. Eden C, Jung T (2001) North atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865-1997). J Clim 14(5):676–691.doi: 10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2 CrossRefGoogle Scholar
  17. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280. doi: 10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2 CrossRefGoogle Scholar
  18. Eden C, Greatbatch R, Lu J (2002) Prospects for decadal prediction of the North Atlantic Oscillation (NAO). Geophys Res Lett 29(10):1466. doi: 10.1029/2001GL014069 CrossRefGoogle Scholar
  19. Enfield D, Mestas-Nunez A, Trimble P et al (2001) The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  20. Gaspar P, Grégoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site. J Geophys Res Oceans (1978–2012) 95(C9):16179–16193. doi: 10.1029/JC095iC09p16179
  21. Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155. doi: 10.1029/2004GL019932 CrossRefGoogle Scholar
  22. Gilman D, Fuglister F, Mitchell Jr J (1963) On the power spectrum of red noise. J Atmos Sci 20(2):182–184CrossRefGoogle Scholar
  23. Goldenberg S, Landsea C, Mestas-Nuñez A, Gray W (2001) The recent increase in Atlantic hurricane activity: Causes and implications. Science 293(5529):474–479.doi: 10.1126/science.1060040 CrossRefGoogle Scholar
  24. Gray S, Graumlich L, Betancourt J, Pederson G (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys Res Lett 31(12):L12205. doi: 10.1029/2004GL019932 CrossRefGoogle Scholar
  25. Greatbatch R (2000) The North Atlantic Oscillation. Stoch Environ Res Risk Assess 14(4):213–242. doi: 10.1007/s004770000047 CrossRefGoogle Scholar
  26. Greatbatch R, Rong P (2006) Discrepancies between different Northern Hemisphere summer atmospheric data products. J Clim 19(7):1261–1273CrossRefGoogle Scholar
  27. Greatbatch R, Zhang S (1995) An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J Clim 8(1):81–91CrossRefGoogle Scholar
  28. Griffies S, Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8(10):2440–2453. doi: 10.1175/1520-0442(1995)008<2440:ALTODB>2.0.CO;2 CrossRefGoogle Scholar
  29. Griffies S, Winton M, Samuels B (2004) The Large and Yeager dataset and CORE. NOAA Geophysical Fluid Dynamics Laboratory PO Box 308, Princeton, New JerseyGoogle Scholar
  30. Griffies S, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet E, England M, Gerdes R, Haak H, Hallberg R et al (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model 26(1):1–46. doi: 10.1016/j.ocemod.2008.08.007 CrossRefGoogle Scholar
  31. Gulev SK, Jung T, Ruprecht E (2002) Climatology and interannual variability in the intensity of synoptic-scale processes in the north atlantic from the ncep-ncar reanalysis data. J Clim 15(8):809–828. doi: 10.1175/1520-0442(2002)015<0809:CAIVIT>2.0.CO;2 CrossRefGoogle Scholar
  32. Hasselmann K (1976) Stochastic climate models. Tellus 28(6):31–762,896Google Scholar
  33. Hetzinger S, Halfar J, Mecking J, Keenlyside N, Kronz A, Steneck R, Adey W, Lebednik P (2012) Marine proxy evidence linking decadal north pacific and atlantic climate. Clim Dyn 39(6):1447–1455. doi: 10.1007/s00382-011-1229-4 CrossRefGoogle Scholar
  34. Hurrell J (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–678. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  35. Hurrell J (1996) Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature. Geophys Res Lett 23(6):665–668CrossRefGoogle Scholar
  36. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climatic significance and environmental impact, vol 134. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  37. Jones P, Jonsson T, Wheeler D (1997) Extension to the north atlantic oscillation using early instrumental pressure observations from gibraltar and south-west iceland. Int J Climatol 17(13):1433–1450CrossRefGoogle Scholar
  38. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031. doi: 10.1175/JCLI3462.1 CrossRefGoogle Scholar
  39. Kerr R (2000) A north atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. doi: 10.1126/science.288.5473.1984 CrossRefGoogle Scholar
  40. Kilbourne K, Quinn T, Webb R, Guilderson T, Nyberg J, Winter A (2008) Paleoclimate proxy perspective on caribbean climate since the year 1751: evidence of cooler temperatures and multidecadal variability. Paleoceanography 23(3):PA3220. doi: 10.1029/2008PA001598 CrossRefGoogle Scholar
  41. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):2–5. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  42. Köller M, Käse R, Herrmann P (2010) Interannual to multidecadal variability and predictability of North Atlantic circulation in a coupled earth system model with parametrized hydraulics. Tellus A 62(4):569–578. doi: 10.1111/j.1600-0870.2010.00450.x CrossRefGoogle Scholar
  43. Kwon Y, Frankignoul C (2012) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim Dyn 38(5):859–876. doi: 10.1007/s00382-011-1040-2 CrossRefGoogle Scholar
  44. Langehaug H, Medhaug I, Eldevik T, Otterå O (2012) Arctic/Atlantic exchanges via the subpolar gyre. J Clim. 25(7):2421–2439. doi: 10.1175/JCLI-D-11-00085.1 CrossRefGoogle Scholar
  45. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research. doi: 10.5065/D6KK98Q6
  46. Large W, Yeager S (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2):341–364. doi: 10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  47. Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing? J Clim 19(18):4631–4637. doi: 10.1175/JCLI3876.1 CrossRefGoogle Scholar
  48. Lohmann K, Drange H, Bentsen M (2009) A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys Res Lett 36(15):L15,602. doi: 10.1029/2009GL039166 CrossRefGoogle Scholar
  49. Madec G, Delecluse P, Imbard M, Lévy C et al (1998) Opa 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace 11Google Scholar
  50. Marshall J, Schott F (1999) Open-ocean convection: Observations, theory, and models. Rev Geophy 37(1):1–64. doi: 10.1029/98RG02739 CrossRefGoogle Scholar
  51. Medhaug I, Langehaug H, Eldevik T, Furevik T, Bentsen M (2012) Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Clim Dyn 39(1–2):77–93. doi: 10.1007/s00382-011-1124-z CrossRefGoogle Scholar
  52. Menary M, Park W, Lohmann K, Vellinga M, Palmer M, Latif M, Jungclaus J (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38(11):2377–2388. doi: 10.1007/s00382-011-1172-4 CrossRefGoogle Scholar
  53. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33(1):45–62. doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  54. Ortega P, Hawkins E, Sutton R (2011) Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled gcm. Clim Dyn 37(9):1771–1782. doi: 10.1007/s00382-011-1025-1 CrossRefGoogle Scholar
  55. Park W, Latif M (2011) Atlantic meridional overturning circulation response to idealized external forcing. Clim Dyn 39(7–8):1709–1726. doi: 10.1007/s00382-011-1212-0 Google Scholar
  56. Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  57. Schweckendiek U, Willebrand J (2005) Mechanisms affecting the overturning response in global warming simulations. J Clim 18(23):4925–4936. doi: 10.1175/JCLI3550.1 CrossRefGoogle Scholar
  58. Shumway RH, Stoffer DS, Stoffer DS (2000) Time series analysis and its applications, vol 549. Springer, New YorkCrossRefGoogle Scholar
  59. Skeie P (2000) Meridional flow variability over the Nordic seas in the Arctic Oscillation framework. Geophys Res Lett 27(16):2569–2572. doi: 10.1029/2000GL011529 CrossRefGoogle Scholar
  60. The Drakkar Group (2007) Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exch (12):8–10Google Scholar
  61. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11(8):1906–1931CrossRefGoogle Scholar
  62. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  63. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the atlantic thermohaline circulation. J Clim 17(23):4498–4511. doi: 10.1175/3219.1 CrossRefGoogle Scholar
  64. Visbeck M, Cullen H, Krahmann G, Naik N (1998) Ocean model’s response to north atlantic oscillation-like wind forcing. Geophys Res Lett 25(24):4521–4524CrossRefGoogle Scholar
  65. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson R, Krahmann G (2003) The ocean’s response to north atlantic oscillation variability. Geophys Monogr Am Geophys Union 134:113–146Google Scholar
  66. Von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  67. Wunsch C (1999) The interpretation of short climate records, with comments on the north atlantic and southern oscillations. Bull Am Meteorol Soc 80:245–256. doi: 10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2 CrossRefGoogle Scholar
  68. Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical north atlantic. Geophys Res Lett 34(12):L12,713. doi: 10.1029/2007GL030225 CrossRefGoogle Scholar
  69. Zhang R, Delworth T (2006) Impact of atlantic multidecadal oscillations on india/sahel rainfall and atlantic hurricanes. Geophys Res Lett 33(17):L17,712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. V. Mecking
    • 1
    Email author
  • N. S. Keenlyside
    • 2
  • R. J. Greatbatch
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Geophysical Institute and Bjerknes CentreUniversity of BergenBergenNorway

Personalised recommendations