Climate Dynamics

, Volume 41, Issue 11–12, pp 2937–2955 | Cite as

Simulation of rainfall anomalies leading to the 2005 drought in Amazonia using the CLARIS LPB regional climate models

  • J. MarengoEmail author
  • S. Chou
  • C. Mourao
  • S. Solman
  • E. Sanchez
  • P. Samuelsson
  • R. P. da Rocha
  • L. Li
  • N. Pessacg
  • A. R. C. Remedio
  • A. F. Carril
  • I. F Cavalcanti
  • D. Jacob


The meteorological characteristics of the drought of 2005 in Amazonia, one of the most severe in the last 100 years were assessed using a suite of seven regional models obtained from the CLARIS LPB project. The models were forced with the ERA-Interim reanalyses as boundary conditions. We used a combination of rainfall and temperature observations and the low-level circulation and evaporation fields from the reanalyses to determine the climatic and meteorological characteristics of this particular drought. The models reproduce in some degree the observed annual cycle of precipitation and the geographical distribution of negative rainfall anomalies during the summer months of 2005. With respect to the evolution of rainfall during 2004–2006, some of the models were able to simulate the negative rainfall departures during early summer of 2005 (December 2004 to February 2005). The interannual variability of rainfall anomalies for both austral summer and fall over northern and southern Amazonia show a large spread among models, with some of them capable of reproducing the 2005 observed negative rainfall departures (four out of seven models in southern Amazonia during DJF). In comparison, all models simulated the observed southern Amazonia negative rainfall and positive air temperature anomalies during the El Nino-related drought in 1998. The spatial structure of the simulated rainfall and temperature anomalies in DJF and MAM 2005 shows biases that are different among models. While some models simulated the observed negative rainfall anomalies over parts of western and southern Amazonia during DJF, others simulated positive rainfall departures over central Amazonia. The simulated circulation patterns indicate a weaker northeasterly flow from the tropical North Atlantic into Amazonia, and reduced flows from southern Amazonia into the La Plata basin in DJF, which is consistent with observations. In general, we can say that in some degree the regional models are able to capture the response to the forcing from the tropical Atlantic during the drought of 2005 in Amazonia. Moreover, extreme climatic conditions in response to anomalous low-level circulation features are also well captured, since the boundary conditions come from reanalysis and the models are largely constrained by the information provided at the boundaries. The analysis of the 2005 drought suggests that when the forcing leading to extreme anomalous conditions is associated with both local and non-local mechanisms (soil moisture feedbacks and remote SST anomalies, respectively) the models are not fully capable of representing these feedbacks and hence, the associated anomalies. The reason may be a deficient reproduction of the land–atmosphere interactions.


Amazonia Drought Downscaling Regional models 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 212492: CLARIS LPB, Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin. Additional funding was provided by RedeCLIMA, the National Institute of Science and Technology (INCT) for Climate Change funded by CNPq Grant Number 573797/2008-0 and FAPESP Grant Number 57719-9, the FAPESPAssessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options project (Ref. 2008/581611). This work has been partially supported by UBACyT Grant X160, UBACyT Grant Y028 and Conicet Grant PIP 112-200801-00195.


  1. Berrisford P, Dee DP, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala SM (2009) The ERA-Interim archive. ERA Report Series, No. 1. ECMWF, Reading, UKGoogle Scholar
  2. Betts AK, Kohler M, Zhang Y (2009) Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J Geophys Res 114:D02101. doi: 10.1029/2008JD010761 CrossRefGoogle Scholar
  3. Boberg P, Berg P, Thejll A, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi: 10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  4. Boulanger JP, Schlindwein S, Gentile E (2011) CLARIS LPB WP1: metamorphosis of the CLARIS LPB European project: from a mechanistic to a systemic approach. CLIVAR exchanges, No. 57 16(3):7–10Google Scholar
  5. Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2011) Future climate of the Caribbean from a regional climate model. Int J Climatol 31(12):1866–1878. doi: 10.1002/joc.2200 CrossRefGoogle Scholar
  6. Carril AF, Menéndez CG, Remedio ARC, Robledo F, Sörensson A, Tencer B, Boulanger JP, de Castro M, Jacob D, Le Treut H, Li LZX, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39(12):2747–2768. doi: 10.1007/s00382-012-1573-z CrossRefGoogle Scholar
  7. Chen F, Dudhia J (2001) Coupling and advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  8. Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2011) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn. doi: 10.1007/s00382-011-1002-8 Google Scholar
  9. Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasingrisk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215. doi: 10.1038/nature06960 CrossRefGoogle Scholar
  10. da Rocha RP, Rodrigues CAM, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res 114:1–19. doi: 10.1029/2008JD010212 CrossRefGoogle Scholar
  11. da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52(1):253–265. doi: 10.3354/cr01065 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  13. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) Version 1E as coupled to the NCAR community climate model, NCAR Tech. Note, NCAR/TN-387. National Center for Atmospheric Research, Boulder, COGoogle Scholar
  14. Domínguez M, Gaertner MA, De Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35(1):249–265CrossRefGoogle Scholar
  15. Ek MB, Mitchell MK, Liu Y, Rogers E, Grunman P, Koren V, Gayano G, Tarpley JD (2003) Implementation of Noah Land Model advances in the NCEP operational Eta Model. J Geophys Res 108(D22):8851–8867CrossRefGoogle Scholar
  16. Espinoza Villar JC, Guyot J, Ronchail J, Cochonneau G, Filizola N, Fraizy P, Vauchel P (2009) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol 375:297–311. doi: 10.1016/j.jhydrol.2009.03.004 CrossRefGoogle Scholar
  17. Figueroa SN, Nobre CA (1990) Precipitations distribution over central and western tropical South America. Climanálise 5(6):36–45Google Scholar
  18. Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554. doi: 10.1002/joc.1716 CrossRefGoogle Scholar
  19. Grimm AM (2010) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events and possible effects of climate change. Stoch Env Res Risk Assess. doi: 10.1007/s00477-010-0420-1 Google Scholar
  20. Harper AB, Denning AS, Baker I, Branson M, Prihodko L, Randall D (2010) The role of deep soil moisture in modulating climate in the Amazon rainforest. Geophys Res Lett 2009GL042302Google Scholar
  21. Jacob L, Barring T, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellstrom E, Lenderink G, Rockel B, Sanchez E, Schar C, Seneviratne SI, Somot S, Van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi: 10.1007/s10584-006-9213-4 CrossRefGoogle Scholar
  22. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu O, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature. doi: 10.1038/nature09396 Google Scholar
  23. Karmalkar AV, Bradley R, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. doi: 10.1007/s00382-011-1099-9 CrossRefGoogle Scholar
  24. Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B, Jack C, Lennard C, Favre A (2012) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn. doi: 10.1007/s00382-013-1751-7
  25. Krinner G, Viovy N, de Noblet N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  26. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 amazon drought. Science 331:554CrossRefGoogle Scholar
  27. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280CrossRefGoogle Scholar
  28. Marengo JA, Nobre CA, Tomasella J, Oyama MD, de Oliveira GS, de Oliveira R, Camargo H, Alves LM, Brown IF (2008a) The drought of Amazonia in 2005. J Clim 21:495–516. doi: 10.1175/2007JCLI1600.1 CrossRefGoogle Scholar
  29. Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008b) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos Trans R Soc B 363:1773–1778. doi: 10.1098/rstb.2007.0015 CrossRefGoogle Scholar
  30. Marengo JA, Jones R, Alves LM, Valverde MC (2009a) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255CrossRefGoogle Scholar
  31. Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde MC, Ferraz SET, Torres RR, Santos DC (2009b) Future change of climate in South America in the late XXI century: intercomparison of scenarios from three regional climate models. Clim Dyn. doi: 10.1007/s00382-009-0721-6 Google Scholar
  32. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011a) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi: 10.1029/2011GL047436 CrossRefGoogle Scholar
  33. Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra A, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2011b) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River Basins. Clim Dyn. doi: 10.1007/s00382-011-1155-5 Google Scholar
  34. Mearns LO, Gutowski WJ, Jones R, Leung L-Y, McGinnis S, Nunes AMB, Qian Y (2009) A regional climate change assessment program for North America. EOS 90:311–312CrossRefGoogle Scholar
  35. Menéndez CG, de Castro M, Boulanger JP, D’Onofrio A, Sanchez E, Sörensson AA, Blazquez J, Elizalde A, Jacob D, Le Treut H, Li LZX, Núñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2010a) Downscaling extreme month-long anomaliesin southern South America. Clim Change 98:379–403. doi: 10.1007/s10584-009-9739-3 CrossRefGoogle Scholar
  36. Menéndez CG, de Castro M, Sörensson AA, Boulanger JP, Participating CLARIS Modeling Groups (2010b) CLARIS project: towards climate downscaling in South America. Meteorol Z 19:357–362. doi: 10.1127/0941-2948/2010/0459 CrossRefGoogle Scholar
  37. Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim. doi: 10.1175/2010JCLI3874.1 Google Scholar
  38. New M, Hulme M, Jones P (2000) Representing twentieth-century space time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  39. Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15:1389–1407CrossRefGoogle Scholar
  40. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi: 10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  41. Ronchail J, Cochonneau G, Molinier M, Guyot JL, de Miranda AG, Guimarães V, de Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and tropical Atlantic Oceans. Int J Climatol 22:1663–1686. doi: 10.1002/joc.815 CrossRefGoogle Scholar
  42. Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Global Precipitation Climatology Centre (GPCC), DWD, pp 1–8Google Scholar
  43. Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani RR, Myneni RB (2010) Amazon forests did not green-up during the 2005 drought. Geophys Res Lett 37:L05401. doi: 10.1029/2009GL042154 CrossRefGoogle Scholar
  44. Sanchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim Dyn 29:319–332CrossRefGoogle Scholar
  45. Sestini MF, Alvalá RCS, Mello EMK, Valeriano DM, Chou SC, Nobre CA, Paiva JAC, Reimer E (2002) Elaboração de mapas de vegetação para utilização em modelos meteorológicos e hidrológicos. São José dos Campos. Deposited in the URLib collection 2002 (INPE-8972-RPQ/730).
  46. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185CrossRefGoogle Scholar
  47. Soares WR, Marengo JA (2009) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol. doi: 10.1002/joc.1800
  48. Solman S, Pessacg N (2012) Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Clim Dyn. doi: 10.1007/s00382-011-1049-6 Google Scholar
  49. Solman S, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn. doi: 10.1007/s00382-013-1667-2 Google Scholar
  50. Sorensson AA, Menéndez CG, Ruscica R, Alexander P, Samuelsson P, Willén U (2010) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19(4):347–355CrossRefGoogle Scholar
  51. Sternberg H (1987) Aggravation of floods in the Amazon River as a consequence of deforestation? Geogr Ann 69:201–219CrossRefGoogle Scholar
  52. Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR (2011) The droughts of 1996–1997 and 2004–2005 in Amazonia: hydrological response in the river main-stem. Hydrol Process 25:1228–1242. doi: 10.1002/hyp.7889 CrossRefGoogle Scholar
  53. Tomasella J, Pinho PF, Borma LS, Marengo JA, Nobre CA, Bittencourt ORFO, Prado MCR, Rodriguez DA, Cuartas LA (2013) The droughts of 1997 and 2005 in Amazonia: floodplain hydrology and its potential ecological and human impacts. Clim Change 116:723–746. doi: 10.1007/s10584-012-0508-3 Google Scholar
  54. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi: 10.1029/2008JD011021 CrossRefGoogle Scholar
  55. Uppala SM (2009) The ERA-Interim archive. ERA Report Series, No. ECMWF, Reading, UKGoogle Scholar
  56. Vicuña S, Garreaud RD, McPhee J (2011) Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Clim Change 105:469–488. doi: 10.1007/s10584-010-9888-4 CrossRefGoogle Scholar
  57. Wehner MF (2012) Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim Dyn. doi: 10.1007/s00382-012-1393-1 Google Scholar
  58. Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. doi: 10.1007/s00382-009-0551-6 CrossRefGoogle Scholar
  59. Zeng N, Yoon J-H, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin JD (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3. doi: 10.1088/1748-9326/3/1/014002

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Marengo
    • 1
    Email author
  • S. Chou
    • 2
  • C. Mourao
    • 1
  • S. Solman
    • 3
    • 10
    • 11
  • E. Sanchez
    • 4
  • P. Samuelsson
    • 5
  • R. P. da Rocha
    • 6
  • L. Li
    • 7
  • N. Pessacg
    • 8
  • A. R. C. Remedio
    • 9
  • A. F. Carril
    • 3
    • 10
    • 11
  • I. F Cavalcanti
    • 2
  • D. Jacob
    • 9
    • 12
  1. 1.Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (CCST INPE)Cachoeira PaulistaBrazil
  2. 2.Centro de Previsao de Tempo e Estudos Climaticos, Instituto Nacional de Pesquisas Espaciais (CPTEC INPE)Cachoeira PaulistaBrazil
  3. 3.Centro de Investigaciones del Mar y la Atmósfera (CIMA)CONICET-UBABuenos AiresArgentina
  4. 4.Facultad Ciencias Ambientales y BioquimicaUniversidad de Castilla-La ManchaToledoSpain
  5. 5.Rossby CentreSMHINorrköpingSweden
  6. 6.Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  7. 7.Laboratoire de Météorologie Dynamique, IPSLCNRS/UPMCParisFrance
  8. 8.Centro Nacional Patagónico (CENPAT/CONICET)Puerto MadrynArgentina
  9. 9.Max Planck Institute for MeteorologyHamburgGermany
  10. 10.Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), FCENUniversidad de Buenos AiresBuenos AiresArgentina
  11. 11.UMI IFAECI/CNRSBuenos AiresArgentina
  12. 12.Climate Services Center (CSC)HamburgGermany

Personalised recommendations