Climate Dynamics

, Volume 42, Issue 3–4, pp 1029–1042 | Cite as

Why were some La Niñas followed by another La Niña?

Article

Abstract

This paper investigates why some La Niña events are followed by another La Niña and some others are not. We propose two preconditions that result in continuation of a La Niña. The first one is that La Niña must be a strong event (a major La Niña). This ensures that the reflected Rossby wave signal at the eastern boundary of the Pacific has a strong westward propagating cold ocean temperature anomaly over the off-equatorial region. The off-equator cold anomaly may not be conducive to the equatorial recharge process, and as a result, may favor the persistence of cold ocean subsurface temperature anomaly and prevent the transition from La Niña to El Niño. The second precondition is whether there are eastward propagating downwelling Kelvin waves during the decay phase of a major La Niña. Eastward propagating downwelling Kelvin waves could lead to demise for a tendency for a follow-up La Niña. The equatorial Kelvin wave activities are associated with fluctuations of surface wind in the equatorial far-western Pacific. The analysis suggests that both the surface wind in the equatorial far-western Pacific and the recharge/discharge of the equatorial Pacific are indicators for occurrence or no occurrence of a follow-up La Niña event.

Keywords

Multi-year La Nina Oceanic Kelwin wave Surface wind stress divergence in far-western Pacific Recharge and discharge processes 

References

  1. Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean-Indonesian seas on El Niño characteristics. J Clim 23:3933–3952CrossRefGoogle Scholar
  2. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Amer Meteor Soc 93(5):631–651CrossRefGoogle Scholar
  3. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Preprints, eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA. Amer Meteor SocGoogle Scholar
  4. Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26:1027–1030CrossRefGoogle Scholar
  5. Clarke AJ, Gorder SV (2001) ENSO prediction using an ENSO trigger and a proxy for western equatorial Pacific warm pool movement. Geophys Res Lett 28(4):579–582CrossRefGoogle Scholar
  6. Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37(4):1077–1091CrossRefGoogle Scholar
  7. Glantz MH (2000) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge University Press, Cambridge, p 266, ISBN 052178672XGoogle Scholar
  8. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Amer Meteor Soc 90:325–340Google Scholar
  9. Hoerling M, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786CrossRefGoogle Scholar
  10. Hu Z-Z, Kumar A, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue El Niños: air-sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035. doi:10.1007/s00382-011-1224-9 CrossRefGoogle Scholar
  11. Hu Z-Z, Kumar A, Ren H-L, Wang H, L’Heureux M, Jin F-F (2013) Weakened interannual variability in the tropical Pacific Ocean since 2000. J Clim 26(8):2601–2613. doi:10.1175/JCLI-D-12-00265.1 Google Scholar
  12. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  13. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125. doi:10.1029/2002GL015924 CrossRefGoogle Scholar
  14. Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801CrossRefGoogle Scholar
  15. Kug J-S, An S-I, Jin F-F, Kang I-S (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674 CrossRefGoogle Scholar
  16. Kumar A, Hu Z-Z (2012) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn 39(3–4):575–588. doi:10.1007/s00382-011-1104-3 CrossRefGoogle Scholar
  17. Kumar A, Hu Z-Z (2013) Interannual variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Clim Dyn (online release). doi:10.1007/s00382-013-1721-0 Google Scholar
  18. Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during La Niña? Geophys Res Lett 37:L12702. doi:10.1029/2010GL043394 Google Scholar
  19. Lau N-C, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20CrossRefGoogle Scholar
  20. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007 Google Scholar
  21. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing long wave radiation dataset. Bull Amer Meteor Soc 77:1275–1277Google Scholar
  22. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi:10.1029/2012GL051826 CrossRefGoogle Scholar
  23. McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36:L13703. doi:10.1029/2009GL038774 CrossRefGoogle Scholar
  24. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275 CrossRefGoogle Scholar
  25. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559CrossRefGoogle Scholar
  26. Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192CrossRefGoogle Scholar
  27. Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829. doi:10.1175/2011JCLI3999.1 CrossRefGoogle Scholar
  28. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  29. Seo K-H, Xue Y (2005) MJO-related oceanic Kelvin waves and the ENSO cycle: a study with the NCEP Global Ocean Data Assimilation System. Geophys Res Lett 32:L07712. doi:10.1029/2005GL022511 CrossRefGoogle Scholar
  30. Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Clim 14:98–115CrossRefGoogle Scholar
  31. Wang B, Zhang Q (2002) Pacific-East Asian teleconnection, part II: how the Philippine Sea anticyclone established during development of El Niño. J Clim 15:3252–3265CrossRefGoogle Scholar
  32. Wang W, Chen M, Kumar A, Xue Y (2011) How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys Res Lett 38:L13705. doi:10.1029/2011GL047684 Google Scholar
  33. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2013) El Niño-Southern Oscillation (ENSO): a review. In: Glymn P, Manzello D, Enochs I (eds) Coral reefs of the eastern Pacific. Springer Science Publisher (in press)Google Scholar
  34. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90(C4):7129–7132CrossRefGoogle Scholar
  35. Zhang X, McPhaden MJ (2010) Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: influence of local versus remote wind forcing. J Clim 23:4375–4394. doi:10.1175/2010JCLI3469.1 Google Scholar
  36. Zhang W-J, Li J-P, Jin F-F (2009) Spatial and temporal features of ENSO meridional scales. Geophys Res Lett 36:L15605. doi:10.1029/2009GL038672 Google Scholar
  37. Zhang R-H, Zheng F, Zhu J, Wang ZG (2013) A successful real-time forecast of the 2010–11 La Niña event. Sci Rep 3:1108. doi:10.1038/srep01108 Google Scholar

Copyright information

© Springer-Verlag (outside the USA) 2013

Authors and Affiliations

  • Zeng-Zhen Hu
    • 1
  • Arun Kumar
    • 1
  • Yan Xue
    • 1
  • Bhaskar Jha
    • 1
    • 2
  1. 1.NCEP/NWS/NOAAClimate Prediction CenterCollege ParkUSA
  2. 2.WYLE Science, Technology and Engineering GroupHoustonUSA

Personalised recommendations