Climate Dynamics

, Volume 42, Issue 3–4, pp 649–663 | Cite as

Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions

  • N.-E. OmraniEmail author
  • N. S. Keenlyside
  • Jürgen Bader
  • Elisa Manzini


There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.


North Atlantic Oscillation (NAO) and Northern Annular Mode (NAM) Atlantic Multidecadal Oscillation (AMO) and Variability (AMV) Major Stratospheric Warming (MSW) and stratosphere–troposphere coupling Ocean–Atmosphere interaction Tropical–Extratropical teleconnections Multidecadal NAO and NAM trends and variability 



We are grateful to Marco Giorgetta, Hisashi Nakamura, Mojib Latif, Richard Greatbatch and Adam Scaife for many fruitful discussion and critical comments. Computing resources at the Deutsche Klimarechenzentrum, and the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen are also acknowledged. The work was primarily supported by the Deutsches Forschungsgemeinschaft under the Emmy Noether- Programm (Grant KE 1471/2-1); but also by the European Union SUMO (ERC Grant # 266722) and STEPS (PCIG10-GA-2011-304243) projects; DecCen project funded by the research council of Norway; by the Centre for Climate Dynamics at the Bjerknes centre, Norway; by the Max Planck Society, and by the Federal Ministry of Education and Research in Germany (BMBF) through the research programme “MiKlip” (FKZ: 01LP1158A).


  1. Allan R, Ansell T (2006) A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404CrossRefGoogle Scholar
  3. Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Clim 15:1969–1978CrossRefGoogle Scholar
  4. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, London, p 489Google Scholar
  5. Bader J, and Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22). doi: 10.1029/2003gl018426
  6. Baldwin MP, Dunkerton TJ (1999) Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–30946CrossRefGoogle Scholar
  7. Barsugli JJ, Battisti DS (1998) The basic effects of atmosphere-ocean thermal coupling on midlatitude variability. J Atmos Sci 55(4):477–493CrossRefGoogle Scholar
  8. Bell CJ, Gray LJ, Kettleborough J (2010) Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Q J R Meteorol Soc 136(650):1181–1190. doi: 10.1002/Qj.633 Google Scholar
  9. Black RX (2002) Stratospheric forcing of surface climate in the Arctic oscillation. J Clim 15:268–277CrossRefGoogle Scholar
  10. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability (vol 484, pg 228, 2012). Nature 485:534. doi: 10.1038/Nature11138 Google Scholar
  11. Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27(6):767–770CrossRefGoogle Scholar
  12. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J Clim 22(5):1223–1238. doi: 10.1175/2008jcli2549.1 CrossRefGoogle Scholar
  13. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109. doi: 10.1029/JZ066i001p00083 CrossRefGoogle Scholar
  14. Cohen J, Entekhabi D (2001) The influence of snow cover on Northern Hemisphere climate variability. Atmos Ocean 39(1):35–53CrossRefGoogle Scholar
  15. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  16. Czaja A, Robertson AW, Huck T (2003) The role of Atlantic ocean-atmosphere coupling in affecting North Atlantic Oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 147–172CrossRefGoogle Scholar
  17. Deser C, Blackmon ML (1993) Surface climate variations over the North-Atlantic Ocean during winter—1900–1989. J Clim 6(9):1743–1753CrossRefGoogle Scholar
  18. Deser C, Thomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767CrossRefGoogle Scholar
  19. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14(5):676–691CrossRefGoogle Scholar
  20. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280CrossRefGoogle Scholar
  21. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  22. Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39(1–2):37–57. doi: 10.1007/S00382-011-1109-Y CrossRefGoogle Scholar
  23. Gillett NP, Graf HF, Osborn TJ (2003) Climate change and the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 193–209CrossRefGoogle Scholar
  24. Hartmann DL, Wallace JM, Limpasuvan V, Thompson DWJ, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci USA 97(4):1412–1417CrossRefGoogle Scholar
  25. Hasselmann K (1979) On the signal-to-noise problem in atmospheric response studies. In: Shaw DB (ed) Meteorology of Tropical Oceans. Royal Meteorological Society, Bracknell, UK, pp 251–259Google Scholar
  26. Haynes PH (2005) Stratospheric dynamics. Annu Rev Fluid Mech 37:263–293CrossRefGoogle Scholar
  27. Haynes PH, McIntyre ME, Shepherd TG, Marks CJ, Shine KP (1991) On the ‘‘downward’’ control of extratropical diabatic circulations by eddy induced mean zonal forces. J Atmos Sci 48:651–680CrossRefGoogle Scholar
  28. Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface Temperature: a multimodel comparison. Clim Dyn 34(7–8):1041–1058. doi: 10.1007/S00382-009-0571-2 CrossRefGoogle Scholar
  29. Hoerling MP, Hurrell JW, Xu TY (2001) Tropical origins for recent North Atlantic climate change. Science 292(5514):90–92CrossRefGoogle Scholar
  30. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 1–35CrossRefGoogle Scholar
  31. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031. doi: 10.1175/JCLI3462.1 Google Scholar
  32. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  33. Karpechko AY and Manzini E (2012) Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J Geophys Res Atmos 117. doi: 10.1029/2011jd017036
  34. Kindem IT, Christiansen B (2001) Tropospheric response to stratospheric ozone loss. Geophys Res Lett 28(8):1547–1550CrossRefGoogle Scholar
  35. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26(1):79–91. doi: 10.1007/s00382-005-0085-5 CrossRefGoogle Scholar
  36. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  37. Kushnir Y, Robinson WA, Blade I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256CrossRefGoogle Scholar
  38. Langematz U, Kunze M, Kruger K, Labitzke K, and Roff GL (2003) Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J Geophys Res Atmos 108(D1). doi: 10.1029/2002jd002069
  39. Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26(20):3133–3136CrossRefGoogle Scholar
  40. Limpasuvan V and Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429Google Scholar
  41. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19(16):3863–3881CrossRefGoogle Scholar
  42. Manzini E, Cagnazzo C, Fogli PG, Bellucci A and Muller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean, Geophys Res Lett 39. doi: 10.1029/2011gl050771
  43. Morgenstern O et al. (2010) Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. J Geophys Res Atmos 115. doi: 10.1029/2009jd013347
  44. Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res Atmos 106(D17):19999–20010. doi: 10.1029/2000jd000061 CrossRefGoogle Scholar
  45. Nishii K, Nakamura H, Miyasaka T (2009) Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: a case-study. Q J R Meteorol Soc 135(638):39–52. doi: 10.1002/Qj.359 CrossRefGoogle Scholar
  46. Ottera OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694CrossRefGoogle Scholar
  47. Perlwitz J, Harnik N (2003) Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J Clim 16:3011–3026CrossRefGoogle Scholar
  48. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  49. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398(6725):320–323CrossRefGoogle Scholar
  50. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: Model description, vol 349. Max Planck Institute for Meteorology, Hamburg, p 127Google Scholar
  51. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi: 10.1029/2005GL023226 CrossRefGoogle Scholar
  52. Scaife AA et al (2012) Climate change projections and stratosphere-troposphere interaction. Clim Dyn 38(9–10):2089–2097. doi: 10.1007/s00382-011-1080-7 CrossRefGoogle Scholar
  53. Schimanke S, Korper J, Spangehl T and Cubasch U (2011) Multi-decadal variability of sudden stratospheric warmings in an AOGCM. Geophys Res Lett 38:L01801. doi: 10.1029/2010GL045756 CrossRefGoogle Scholar
  54. Semenov VA, Latif M, Jungclaus JH and Park W (2008) Is the observed NAO variability during the instrumental record unusual?. Geophys Res Lett 35(11). doi: 10.1029/2008gl033273
  55. Song Y, Robinson W (2004) Dynamical mechanisms for stratospheric influences on the troposphere. J Atmos Sci 61:1711–1725CrossRefGoogle Scholar
  56. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  57. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  58. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324(5923):78–80. doi: 10.1126/Science.1166349 CrossRefGoogle Scholar
  59. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic Thermohaline Circulation. J Clim 17:4498–4511Google Scholar
  60. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson B, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability in “The North Atlantic Oscillation”. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 113–146CrossRefGoogle Scholar
  61. Winter B and Bourqui M (2010) Wave forcing in the stratosphere under doubled-CO2 conditions in a 100-year coupled chemistry-climate model study. J Geophys Res Atmos 115. doi: 10.1029/2009jd012777
  62. WMO (2011) Scientific assessment of ozone depletion: 2010 Rep. Geneva, Switzerland, p 516Google Scholar
  63. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull Am Meteorol Soc 80(2):245–255CrossRefGoogle Scholar
  64. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17):L17712. doi: 10.1029/2006gl026267 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N.-E. Omrani
    • 1
    • 2
    Email author
  • N. S. Keenlyside
    • 1
    • 3
  • Jürgen Bader
    • 3
    • 4
  • Elisa Manzini
    • 4
  1. 1.Geophysical InstituteUniversity of BergenBergenNorway
  2. 2.GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Bjerknes Centre for Climate ResearchBergenNorway
  4. 4.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations