Climate Dynamics

, Volume 42, Issue 1–2, pp 1–20 | Cite as

Decadal prediction skill in the GEOS-5 forecast system

  • Yoo-Geun Ham
  • Michele M. Rienecker
  • Max J. Suarez
  • Yury Vikhliaev
  • Bin Zhao
  • Jelena Marshak
  • Guillaume Vernieres
  • Siegfried D. Schubert


A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.


Decadal prediction AMOC Decadal variability GEOS-5 AOGCM 



This study was supported by NASA’s Modeling, Analysis and Prediction program. Computer time was provided by the NASA Center for Climate Simulation at NASA Goddard Space Flight Center (GSFC). Support from Tony Rosati and colleagues from NOAA’s Geophysical Fluid Dynamics Laboratory in the configuration of MOM4 are gratefully acknowledged, as is that from Elizabeth Hunke at Los Alamos National Laboratory in the use of CICE. Arlindo da Silva and Peter Colarco at GSFC configured the aerosol component of the AOGCM. We are grateful for the comments from two anonymous reviewers that helped improve the manuscript.


  1. Antonov JI et al (2010) World Ocean Atlas 2009 vol. 2: Salinity. In: S. Levitus (ed) NOAA Atlas NESDIS 69 US. Government Printing Office, Washington, D.C. 184 ppGoogle Scholar
  2. Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034. doi: 10.1175/2008MWR2433.1 CrossRefGoogle Scholar
  3. Bingham RJ, Hughes CW, Roussenov V, Williams RG (2007) Meridional coherence of the North Atlantic meridional overturning circulation. Geophys Res Lett 34:L23606. doi: 10.1029/2007GL031731 CrossRefGoogle Scholar
  4. Chikamoto Y, Kimoto M, Ishii M, Mochizuki T, Sakamoto TT, Tatebe H, Komuro Y, Watanabe M, Nozawa T, Shiogama H, Mori M, Yasunaka S, Imada Y (2012) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC, Clim Dyn. doi: 10.1007/s00382-012-1351-y
  5. Delworth TL, Mann ME (2000) Observed and simulated multi decadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  6. Dijkstra HA, te Raa L, Schmeits M, Gerrits J (2006) On the physics of the Atlantic multi decadal oscillation. Ocean Dyn 56:36–50CrossRefGoogle Scholar
  7. Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the European centre for medium-range weather forecasts coupled forecast system: impact of ocean observations. J Geophys Res 116:D19111. doi: 10.1029/2010JD015394 CrossRefGoogle Scholar
  8. Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J Clim 18:1117–1135. doi: 10.1175/JCLI3328.1 CrossRefGoogle Scholar
  9. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multi decadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  10. Gille ST (2008) Decadal-scale temperature trends in the Southern hemisphere ocean. J Clim 21:4749–4765. doi: 10.1175/2008JCLI2131.1 CrossRefGoogle Scholar
  11. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272. doi: 10.1007/s00382-012-1481-2 Google Scholar
  12. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variabliity. Science 275:181–184CrossRefGoogle Scholar
  13. Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Science 1:45–79CrossRefGoogle Scholar
  14. Hakkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559CrossRefGoogle Scholar
  15. Hakkinen S, Rhines PB, Worthen DL (2011) Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J Geophys Res 116:C03006. doi: 10.1029/2010JC006275 CrossRefGoogle Scholar
  16. Ham YG, Kug JS, Kang IS (2012a) Coupled bred vectors in the tropical Pacific and their application to ENSO prediction, Prog Oceanogr. doi: 10.1016/j.pocean.2012.04.005
  17. Ham YG, Rienecker MM, Schubert S, Marshak J, Yeh SW, Yang SC (2012b) The decadal modulation of coupled bred vectors. Geophys Res Lett 39:L20712. doi: 10.1029/2012GL053719 CrossRefGoogle Scholar
  18. Hatun H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844CrossRefGoogle Scholar
  19. Hawkins ED, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418CrossRefGoogle Scholar
  20. Huang B, Xue Y, Kumar A, Behringer DW (2012) AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Clim Dyn 38:513–525. doi: 10.1007/s00382-011-1035-z CrossRefGoogle Scholar
  21. Hunke EC, Lipscomb WH (2008) CICE: the Los Alamos Sea ice model, documentation and software manual, version 4.0. Technical report, Los Alamos National LaboratoryGoogle Scholar
  22. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153. doi: 10.1175/2008JCLI2292.1 CrossRefGoogle Scholar
  23. ICPO (International CLIVAR Project Office) (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office, CLIVAR publication series no. 150, p 6Google Scholar
  24. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi: 10.1016/j.jmarsys.2005.11.019 CrossRefGoogle Scholar
  25. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with an XBT depth bias correction. J Oceanogr 65:287–299CrossRefGoogle Scholar
  26. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the north Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  27. Kim HM, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39:L10701. doi: 1029/2012GL051644 Google Scholar
  28. Knight JT, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 1029/2005GL024233 CrossRefGoogle Scholar
  29. Lee J-Y et al (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:267–283. doi: 10.1007/s00382-010-0857-4 CrossRefGoogle Scholar
  30. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi: 10.1029/2008GL037155 Google Scholar
  31. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., p 184Google Scholar
  32. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic Oscillation like forcing. Clim Dyn 32:273–285CrossRefGoogle Scholar
  33. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  34. Matei D, Baehr J, Jungclaus J, Haak H, Muller WA, Marotzke J (2012a) Multiyear prediction of monthly mean atlantic meridional overturning circulation at 26.5°N. Science 335:76–79CrossRefGoogle Scholar
  35. Matei D, Pohlmann H, Jungclaus J, Wolfgang M, Haak H, Marotzke J (2012b) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim. doi: 10.1175/JCLI-D-11-00633.1
  36. McPhaden M et al. (2010) The global tropical moored buoy array. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society (vol. 2), Venice, Italy, 21–25 September 2009, ESA Publication WPP-306. doi: 10.5270/OceanObs09.cwp.61
  37. Molod A et al (2012) The GEOS-5 atmospheric general circulation model: mean climate and developement from MERRA to Fortuna., NASA technical report series on global modeling and data assimilation, V28Google Scholar
  38. Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu AX, Buja LE, Strand WG, Teng HY (2005) How much more global warming and sea level rise? Science 307:1769–1772CrossRefGoogle Scholar
  39. Meehl GA et al (2007) Global climate projections. Climate change 2007. In: Solomon S et al (eds) The physical science basis. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  40. Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485. doi: 10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  41. Mochizuki T et al (2010) Pacific decadal oscillation hind casts relevant to near-term climate prediction. Proc Natl Acad Sci USA 107:1833–1837CrossRefGoogle Scholar
  42. Murphy JM (1988) The impact of ensemble forecasts on predictability. Q J R Meteorol Soc 114:463–493CrossRefGoogle Scholar
  43. Pohlmann H, Jungclaus JH, Kohl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22(14):3926–3938. doi: 10.1175/2009JCLI2535.1 CrossRefGoogle Scholar
  44. Pohlmann H, Smith DM, Balaseda MA, Kennlyside NS, Masina S, Matei D, Muller WA, Rogel P (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system, Clim Dyn. doi: 10.1007/s00382-013-1663-6
  45. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  46. Read JF, Gould WJ (1992) Cooling and freshening of the subpolar North Atlantic ocean since the 1960s. Nature 360:55–57CrossRefGoogle Scholar
  47. Reichler T, Kim J, Manzini E, Kroger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci. doi: 10.1038/ngeo1586
  48. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  49. Rienecker MM et al. (2008) The GEOS-5 Data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0, NASA Technical report series on global modeling and data assimilation, V27Google Scholar
  50. Rienecker MM et al (2011) MERRA—NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  51. Robson JI (2010) Understanding the performance of a decadal prediction system. Ph.D. thesis, University of Reading, UKGoogle Scholar
  52. Robson J, Sutton R, Smith D (2012a) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s, 39: L19713. doi: 10.1029/2012GL053370
  53. Robson J, Sutton R, Lohmann K, Smith D (2012b) Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim 25:4116–4134CrossRefGoogle Scholar
  54. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Piser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Clim 37:162–173Google Scholar
  55. Schneider EK, Huang B, Zhu Z, Dewitt DG, Kinter JL, Kirtman BP, Shukla J (1999) Ocean data assimilation, initialization, and predictions of ENSO with a coupled GCM. Mon Weather Rev 127:1187–1207CrossRefGoogle Scholar
  56. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  57. Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn. doi: 10.1007/s00382-013-1683-2
  58. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3(12):846–849Google Scholar
  59. Toth Z, Kalnay E (1993) Ensemble forecasting and NMC: the generation of perturbations. Bull Am Meteorol Soc 74:2317–2330CrossRefGoogle Scholar
  60. Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319CrossRefGoogle Scholar
  61. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280CrossRefGoogle Scholar
  62. Vernieres G, Keppenne C, Rienecker MM, Jacob J, Kovach R (2012) The GEOS-ODAS, description and evaluation. NASA technical report series on global modeling and data assimilation, NASA/TM–2012–104606, Vol. 30Google Scholar
  63. Vikhliaev Y, Kirtman B, Schopf P (2007) Decadal North Pacific bred vectors in a coupled GCM. J Clim 20:5744–5764CrossRefGoogle Scholar
  64. Wetherald RT, Stouffer RJ, Dixon KW (2001) Committed warming and its implications for climate change. Geophys Res Lett 28:1535–1538CrossRefGoogle Scholar
  65. Yang S-C, Kalnay E, Cai M, Rienecker MM (2008) Bred vectors and tropical pacific forecast errors in the NASA coupled general circulation model. Mon Weather Rev 136:1305–1326CrossRefGoogle Scholar
  66. Yeager S, Danabasoglu G (2012) Sensitivity of Atlantic meridional overturning circulation variability to parameterized Nordic Sea overflows in CCSM4. J Clim 25:2077–2103. doi: 10.1175/JCLI-D-11-00149.1 CrossRefGoogle Scholar
  67. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late 20th century North Atlantic ocean heat content. J Clim 25:5173–5189CrossRefGoogle Scholar
  68. Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi: 10.1029/2008GL035463 CrossRefGoogle Scholar
  69. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860. doi: 10.1175/JCLI3460.1 CrossRefGoogle Scholar
  70. Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709. doi: 10.1029/2006GL028683 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoo-Geun Ham
    • 1
    • 2
    • 3
  • Michele M. Rienecker
    • 1
  • Max J. Suarez
    • 1
  • Yury Vikhliaev
    • 1
    • 4
  • Bin Zhao
    • 1
    • 5
  • Jelena Marshak
    • 1
  • Guillaume Vernieres
    • 1
    • 6
  • Siegfried D. Schubert
    • 1
  1. 1.NASA Goddard Space Flight Center (GSFC/NASA)Global Modeling and Assimilation OfficeGreenbeltUSA
  2. 2.Goddard Earth Science Technology & ResearchMorgan State UniversityBaltimoreUSA
  3. 3.Faculty of Earth Systems and Environmental SciencesChonnam National UniversityGwangjuKorea
  4. 4.Goddard Earth Sciences Technology and ResearchUniversities Space Research AssociationColumbiaUSA
  5. 5.Science Applications International Corporation (SAIC)McLeanUSA
  6. 6.Science Systems and Applications, Inc.LanhamUSA

Personalised recommendations