Climate Dynamics

, Volume 42, Issue 7–8, pp 2019–2031 | Cite as

The MJO and global warming: a study in CCSM4

  • Aneesh SubramanianEmail author
  • Markus Jochum
  • Arthur J. Miller
  • Richard Neale
  • Hyodae Seo
  • Duane Waliser
  • Raghu Murtugudde


The change in Madden–Julian oscillation (MJO) amplitude and variance in response to anthropogenic climate change is assessed in the 1° nominal resolution community climate system model, version 4 (CCSM4), which has a reasonable representation of the MJO characteristics both dynamically and statistically. The twentieth century CCSM4 run is compared with the warmest twenty-first century projection (representative concentration pathway 8.5, or RCP8.5). The last 20 years of each simulation are compared in their MJO characteristics, including spatial variance distributions of winds, precipitation and outgoing longwave radiation, histograms of event amplitude, phase and duration, and composite maps of phases. The RCP8.5 run exhibits increased variance in intraseasonal precipitation, larger-amplitude MJO events, stronger MJO rainfall in the central and eastern tropical Pacific, and a greater frequency of MJO occurrence for phases corresponding to enhanced rainfall in the Indian Ocean sector. These features are consistent with the concept of an increased magnitude for the hydrological cycle under greenhouse warming conditions. Conversely, the number of active MJO days decreases and fewer weak MJO events occur in the future climate state. These results motivate further study of these changes since tropical rainfall variability plays such an important role in the region’s socio-economic well being.


MJO Climate change CCSM4 



This research forms a part of the Ph.D. dissertation of A.S. We gratefully acknowledge funding from ONR (N00014-13-1-0139) and NSF (OCE-0960770). This research was initiated during a visit by A.S. to NCAR funded by the SUNNY (Scripps/UCSD/NCAR New and Young) Program. A.S. acknowledges NCARs computational support for simulations conducted for this study. We thank Mitch Moncrieff and Brian Mapes for erudite comments, and criticism of this work. A.S. extends heartfelt thanks to Bruce Cornuelle and Ian Eisenman for many invaluable gems of wisdom on science and data analysis. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484CrossRefGoogle Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  3. D’Agostini G (2003) Bayesian reasoning in data analysis—a critical introduction. World Scientic, SingaporeCrossRefGoogle Scholar
  4. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651CrossRefGoogle Scholar
  5. Gent P, Yeager S, Neale RB, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833CrossRefGoogle Scholar
  6. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973-4991CrossRefGoogle Scholar
  7. Held IM, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686-5699CrossRefGoogle Scholar
  8. Jochum M, Danabasoglu G, Holland M, Kwon Y, Large W (2008) Ocean viscosity and climate. J Geophys Res 113:C06017 doi: 10.1029/2007JC004515 Google Scholar
  9. Jones C, Carvalho L (2006) Changes in the activity of the Madden–Julian oscillation during 1958–2004. J Clim 19:6353–6370CrossRefGoogle Scholar
  10. Jones C, Carvalho L (2011) Will global warming modify the activity of the Madden–Julian oscillation? Q J R Meteorol Soc 137:544–552CrossRefGoogle Scholar
  11. Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean*. J Clim 22:4316–4321CrossRefGoogle Scholar
  12. Kiladis GN, Wheeler M, Haertel P, Straub K, Roundy P (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003 doi: 10.1029/2008RG000266.CrossRefGoogle Scholar
  13. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039CrossRefGoogle Scholar
  14. Lamarque JF, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration pathways. Clim Chang 109:191–212CrossRefGoogle Scholar
  15. Lau WK (2005) El Niño southern oscillation connection. In: Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 271–305Google Scholar
  16. Lau WK, Waliser DE (2012) Intraseasonal variability in the atmosphere-ocean climate system. In: Springer-Praxis books. Springer, BerlinGoogle Scholar
  17. Lin J, Weickmann K, Kiladis G, Mapes B, Sperber K, Lin W, Wheeler M, Schubert S, Genio AD, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690CrossRefGoogle Scholar
  18. Lin S (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307CrossRefGoogle Scholar
  19. Liu P, Li T, Wang B, Zhang M, Luo JJ, Masumoto Y, Wang X, Roeckner E (2012) MJO change with A1B global warming estimated by the 40-km ECHAM5. Clim Dyn. doi: 10.1007/s00382-012-1532-8
  20. Madden RA, Julian P (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837CrossRefGoogle Scholar
  21. Maloney ED, Sobel AH, Hannah WM (2010) Intraseasonal variability in an aquaplanet general circulation model. J Adv Model Earth Syst 2. doi: 10.3894/JAMES.2010.2.5
  22. Matthews A (2004) Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden–Julian oscillation. Geophys Res Lett 31:L24312. doi: 10.1029/2004GL021666.CrossRefGoogle Scholar
  23. Matthews A, Singhruck P, Heywood KJ (2007) Deep ocean impact of a Madden–Julian oscillation observed by Argo floats. Science 318:1765–1769CrossRefGoogle Scholar
  24. McPhaden M (1999) Genesis and evolution of the 1997–1998 El Niño. Science. doi: 10.1126/science.283.5404.950
  25. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque JF, Conley A, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25:3661–3683CrossRefGoogle Scholar
  26. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  27. Neale R, Richter J, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRefGoogle Scholar
  28. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2012) The mean climate of the community atmosphere model (CAM4). J Clim. doi: 10.1175/JCLI-D-12-00236.1
  29. O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815–3832CrossRefGoogle Scholar
  30. O’Gorman PA, Schneider T (2009a) Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Clim 22:5676–5685CrossRefGoogle Scholar
  31. O’Gorman PA, Schneider T (2009b) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106:14773–14777Google Scholar
  32. Pohl B, Matthews A (2007) Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J Clim 20:2659–2674CrossRefGoogle Scholar
  33. Richter J, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3. J Clim 21:1487–1499CrossRefGoogle Scholar
  34. Roundy PE, MacRitchie K, Asuma J, Melino T (2010) Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño-Southern oscillation during boreal winter. J Clim 23:4045–4059CrossRefGoogle Scholar
  35. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi: 10.1029/2009RG000302 CrossRefGoogle Scholar
  36. Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability?* J Clim 25:3355–3372CrossRefGoogle Scholar
  37. Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart J R Meteorol Soc 125:583–609Google Scholar
  38. Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2011) Will there be a significant change to El Nino in the 21st century? J Clim 25:2129-2145CrossRefGoogle Scholar
  39. Subramanian AC, Jochum M, Miller A, Murtugudde R, Neale R, Waliser DE (2011) The Madden–Julian oscillation in CCSM4. J Clim 24:6261–6282CrossRefGoogle Scholar
  40. Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443CrossRefGoogle Scholar
  41. Trenberth K, Dai A, Rasmussen RM (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  42. Vecchi G, Soden B, Wittenberg A, Held IM (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441. doi: 10.1038/nature04744
  43. Waliser DE (2006) Intraseasonal variability. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 203–257CrossRefGoogle Scholar
  44. Waliser DE, Sperber K, Hendon HH, Kim D, Maloney E, Wheeler M, Weickmann K, Zhang C, Donner LJ, Gottschalck J (2008) MJO simulation diagnostics. J Clim 22:3006–3030Google Scholar
  45. Wheeler M, Hendon, HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  46. Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:1–36Google Scholar
  47. Zhang C, Gottschalck J (2002) SST Anomalies of ENSO and the Madden–Julian oscillation in the Equatorial Pacific*. J Clim 15:2429–2445CrossRefGoogle Scholar
  48. Zhou L, Neale RB, Jochum M, Murtugudde R (2012a) Improved Madden–Julian oscillations with improved physics: the impact of modified convection parameterizations. J Clim 25:1116–1136CrossRefGoogle Scholar
  49. Zhou L, Sobel AH, Murtugudde R (2012b) Kinetic energy budget for the Madden–Julian oscillation in a multiscale framework. J Clim 25:5386–5403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aneesh Subramanian
    • 1
    Email author
  • Markus Jochum
    • 2
  • Arthur J. Miller
    • 1
  • Richard Neale
    • 3
  • Hyodae Seo
    • 4
  • Duane Waliser
    • 5
  • Raghu Murtugudde
    • 6
  1. 1.SIO, UCSDLa JollaUSA
  2. 2.Climate and Geophysics DivisionThe Niels Bohr InstituteCopenhagenDenmark
  3. 3.Climate and Global Dynamics DivisionNational Center for Atmospheric ResearchBoulderUSA
  4. 4.Physical Oceanography DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations