Climate Dynamics

, Volume 42, Issue 11–12, pp 3015–3038 | Cite as

COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution

  • Hans-Jürgen PanitzEmail author
  • Alessandro Dosio
  • Matthias Büchner
  • Daniel Lüthi
  • Klaus Keuler


We present the results of the application of the COSMO-CLM Regional Climate Model (CCLM) over the CORDEX-Africa domain. Two simulations were performed driven by the ERA-Interim reanalysis (1989–2008): the first one with the standard CORDEX spatial resolution (0.44°), and the second one with an unprecedented high resolution (0.22°). Low-level circulation and its vertical structure, the geographical and temporal evolution of temperature and precipitation are critically evaluated, together with the radiation budget and surface energy fluxes. CCLM is generally able to reproduce the overall features of the African climate, although some deficiencies are evident. Flow circulation is generally well simulated, but an excessive pressure gradient is present between the Gulf of Guinea and the Sahara, related to a marked warm bias over the Sahara and a cold bias over southern Sahel. CCLM underestimates the rainfall peak in the regions affected by the passage of the monsoon. This dry bias may be a consequence of two factors, the misplacement of the monsoon centre and the underestimation of its intensity. The former is related to the northern shift of the West African Heat Low. On the other hand, the underestimation of precipitation intensity may be related to the underestimation of the surface short-wave radiation and latent heat flux. The increase of the model resolution does not bring evident improvements to the results for monthly means statistics. As a result, it appears that 0.44° is a suitable compromise between model performances and computational constrains.


COSMO-CLM Regional Climate Model CORDEX-Africa High resolution simulation ERA-Interim driven evaluation run 



We would like to thank Grigory Nikulin (SMHI) for providing some of the observational dataset used in this study, and Diego Guizzardi (JRC) for preparing the FEWS database. The SRB data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center NASA/GEWEX SRB Project. GPCC Precipitation data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at Computing resources have been provided by HLRS, Stuttgart, and the European Centre for Medium-Range Weather Forecast (ECMWF), Reading.


  1. Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using RegCM3. Part II: impacts of deforestation and desertification. Theor Appl Climatol 93:245–261. doi: 10.1007/s00704-007-0333-1 CrossRefGoogle Scholar
  2. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Elkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  3. Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86:23–37. doi: 10.1007/s00704-005-0202-8 CrossRefGoogle Scholar
  4. Arakawa V, Lamb V (1977) Computational design of the basic dynamical processes in the UCLA general circulation model. In: Chang J (ed) Methods in computational physics: general circulation models of the atmosphere, vol 17. Academic Press, New York, pp 173–265. ISBN 0-12-460817-5Google Scholar
  5. Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905. doi: 10.1175/MWR-D-10-05013.1 CrossRefGoogle Scholar
  6. Boone AA, Poccard-Leclercq I, Xue Y, Feng J, Rosnay P (2009) Evaluation of the WAMME model surface fluxes using results from the MMA land-surface model intercomparison project. Clim Dyn 35(1):127–142. doi: 10.1007/s00382-009-0653-1 CrossRefGoogle Scholar
  7. Cook K (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  8. D’ Amato N, Lebel T (1998) On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability. Int J Clim 18(9):955–974. doi: 10.1002/(SICI)1097-0088(199807)18:9<955::AID-JOC236>3.0.CO;2-6 CrossRefGoogle Scholar
  9. Davies H (1983) Limitations of some common lateral boundary schemes used in regional NWP models. Mon Weather Rev 111:1002–1012. doi: 10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2 CrossRefGoogle Scholar
  10. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102(432):405–418. doi: 10.1002/qj.49710243210 Google Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  12. Dirmeyer Pa, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87(10):1381–1397. doi: 10.1175/BAMS-87-10-1381 CrossRefGoogle Scholar
  13. Domínguez M, Gaertner Ma, Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35(1):249–265. doi: 10.1007/s00382-010-0769-3 CrossRefGoogle Scholar
  14. Doms G (2011) A description of the nonhydrostatic regional COSMO model part 1: dynamics and numerics. DWD, Offenbach, Germany.
  15. Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konaré A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35(1):175–192. doi: 10.1007/s00382-009-0676-7 CrossRefGoogle Scholar
  16. D’ Orgeval T, Polcher J, Li L (2005) Uncertainties in modelling future hydrological change over West Africa. Clim Dyn 26(1):93–108. doi: 10.1007/s00382-005-0079-3 CrossRefGoogle Scholar
  17. Fu Q, Liou K, Cribb M, Charlock T, Grossman A (1997) Multiple scattering parameterization in thermal infrared radiative transfer. J Atmos Sci 54:2799–2812CrossRefGoogle Scholar
  18. Funk C, Verdin J (2010) Satellite rainfall applications for surface hydrology. Springer, Dordrecht. doi: 10.1007/978-90-481-2915-7 Google Scholar
  19. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(July):175–183Google Scholar
  20. Gupta SK, Darnell WL, Wilber AC (1992) A parameterization for longwave surface radiation from satellite data: recent improvements. J Appl Meteorol 31(12):1361–1367. doi: 10.1175/1520-0450(1992)031<1361:APFLSR>2.0.CO;2 CrossRefGoogle Scholar
  21. Heise E, Lange M, Ritter B, Schrodin R (2003) Improvement and validation of the multilayer soil model. COSMO Newsl 3:198–203.
  22. Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2012) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn. doi: 10.1007/s00382-012-1387-z
  23. Huffman G, Adler R, Morrissey M, Bolvin D, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50CrossRefGoogle Scholar
  24. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  25. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36(17):L17,808CrossRefGoogle Scholar
  26. IPCC (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  27. Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32. doi: 10.1029/2005GL024225
  28. Joyce R, Janowiak J, Arkin P, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503CrossRefGoogle Scholar
  29. Kaspar F, Cubasch U (2008) Simulation of East African precipitation patterns with the regional climate model CLM. Meteorologische Zeitschrift 17(4):511–517. doi: 10.1127/0941-2948/2008/0299 CrossRefGoogle Scholar
  30. Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res 115(D23). doi: 10.1029/2010JD014331
  31. Krähenmann S, Kothe S, Panitz H-J, Ahrens B (2012) Evaluation of daily maximum and minimum 2 m temperatures as simulated with the regional climate model COSMO-CLM over Africa. submitted to?Google Scholar
  32. Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33(2–3):313–330. doi: 10.1007/s00382-009-0553-4 CrossRefGoogle Scholar
  33. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112(G1):G01,023Google Scholar
  34. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10(2):111–127. doi: 10.1002/joc.3370100202 CrossRefGoogle Scholar
  35. Li H, Wang H, Yin Y (2012) Interdecadal variation of the West African summer monsoon during 19792010 and associated variability. Clim Dyn. doi: 10.1007/s00382-012-1426-9
  36. Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Q J R Meteorol Soc 123(537):101–127. doi: 10.1002/qj.49712353704 CrossRefGoogle Scholar
  37. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi: 10.1029/RG020i004p00851 CrossRefGoogle Scholar
  38. Mironov D, Raschendorfer M (2001) Evaluation of empirical parameters of the new LM surface-layer parameterization Scheme: results from numerical experiments including soil moisture analysis. Cosmo technical report 1, DWD, Offenbach, Germany.
  39. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  40. Nicholson SE (2008) The intensity, location and structure of the tropical rainbelt over west Africa as factors in interannual variability. Int J Climatol 28(13):1775–1785. doi: 10.1002/joc.1507 CrossRefGoogle Scholar
  41. Nicholson SE (2009) A revised picture of the structure of the monsoon and land ITCZ over West Africa. Clim Dyn 32(7–8):1155–1171. doi: 10.1007/s00382-008-0514-3 CrossRefGoogle Scholar
  42. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OBs, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim. doi: 10.1175/JCLI-D-11-00375.1
  43. Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Fink AH, Gosset M, Lebel T, Gaye AT, Rowell DP, Moufouma-Okia W, Jacob D, Rockel B, Giorgi F, Rummukainen M (2011) Progress in regional downscaling of west African precipitation. Atmos Sci Lett 12(1):75–82. doi: 10.1002/asl.306 CrossRefGoogle Scholar
  44. Parker DJ, Thorncroft CD, Burton RR, Diongue-Niang A (2005) Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Q J R Meteorol Soc 131(608):1461–1482. doi: 10.1256/qj.03.189 CrossRefGoogle Scholar
  45. Philippon N, Fontaine B (2002) The relationship between the Sahelian and previous 2nd Guinean rainy seasons: a monsoon regulation by soil wetness? Ann Geophys 20(4):575–582. doi: 10.5194/angeo-20-575-2002 CrossRefGoogle Scholar
  46. Pinker RT, Laszlo I (1992) Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31(2):194–211. doi: 10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2 CrossRefGoogle Scholar
  47. Pinker RT, Zhao Y, Akoshile C, Janowiak J, Arkin P (2006) Diurnal and seasonal variability of rainfall in the sub-Sahel as seen from observations, satellites and a numerical model. Geophys Res Lett 33(7):2–5. doi: 10.1029/2005GL025192 Google Scholar
  48. Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsl 1:90–98.
  49. Reason CJC, Rouault M (2005) Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys Res Lett 32(7):L07,705. doi: 10.1029/2005GL022419 Google Scholar
  50. Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87(12):1739–1746. doi: 10.1175/BAMS-87-12-1739 CrossRefGoogle Scholar
  51. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi: 10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2 CrossRefGoogle Scholar
  52. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17(4):347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  53. Rudolf B, Becker A, Schneider U, Meyer-christoffer A, Ziese M (2010) The new GPCC full data reanalysis Version 5 providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC status report (December):1–7Google Scholar
  54. Ruti PM, Williams JE, Hourdin F, Guichard F, Boone A, Van Velthoven P, Favot F, Musat I, Rummukainen M, Domínguez M, Gaertner MA, Lafore JP, Losada T, Rodriguez de Fonseca MB, Polcher J, Giorgi F, Xue Y, Bouarar I, Law K, Josse B, Barret B, Yang X, Mari C, Traore aK (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Lett 12(1):116–122. doi: 10.1002/asl.305 CrossRefGoogle Scholar
  55. Schrodin R, Heise E (2001) The multi-mayer version of the DWD soil model TERRA-LM. Cosmo technical report 2, DWD, Offenbach, Germany.
  56. Schrodin R, Heise E (2002) A new multi-layer soil-model. COSMO Newsl 2:139–151.
  57. Schulz JP (2008) Introducing sub-grid scale orographic effects in the COSMO model. COSMO Newsl 9:29–36. Google Scholar
  58. Seifert A, Beheng KD (2001) A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos Res 59–60:265–281CrossRefGoogle Scholar
  59. Stackhouse Jr. PW, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) He NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21(1):10–12Google Scholar
  60. Steiner AL, Pal JS, Rauscher Sa, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi: 10.1007/s00382-009-0543-6 CrossRefGoogle Scholar
  61. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi: 10.1007/s00703-001-0592-9 CrossRefGoogle Scholar
  62. Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98(3–4):293–314. doi: 10.1007/s00704-009-0110-4 CrossRefGoogle Scholar
  63. Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, DellAquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-Interim reanalysis. Clim Dyn 35(1):231–247. doi: 10.1007/s00382-009-0613-9 CrossRefGoogle Scholar
  64. Sylla MB, Giorgi F, Ruti PM, Calmanti S, DellAquila A (2011) The impact of deep convection on theWest African summermonsoon climate: a regional climate model sensitivity study. Q J R Meteorol Soc 137:141–71430. doi: 10.1002/qj.853 CrossRefGoogle Scholar
  65. Sylla MB, Giorgi F, Coppola E, Mariotti L (2012) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol pp n/a–n/a, doi: 10.1002/joc.3551
  66. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  67. Uppala SM, Dee DP, Kobayashi S, Berrisford P, Simmons AJ (2008) Towards a climate adapt assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18Google Scholar
  68. Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130(8):2088–2097. doi: 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2 CrossRefGoogle Scholar
  69. Xue Y, Sales F, Lau WKM, Boone A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq L, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams SF, Wu MLC (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35(1):3–27. doi: 10.1007/s00382-010-0778-2 CrossRefGoogle Scholar
  70. Zhang Q, Körnich H, Holmgren K (2012) How well do reanalyses represent the southern African precipitation? Clim Dyn. doi: 10.1007/s00382-012-1423-z

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans-Jürgen Panitz
    • 1
    Email author
  • Alessandro Dosio
    • 2
  • Matthias Büchner
    • 3
  • Daniel Lüthi
    • 4
  • Klaus Keuler
    • 5
  1. 1.Karlsruher Institut für TechnologieInstitut für Meteorologie und KlimaforschungEggenstein-LeopoldshafenGermany
  2. 2.European Commission Joint Research CentreIspraItaly
  3. 3.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  4. 4.Swiss Federal Institute of Technology (ETH)ZurichSwitzerland
  5. 5.Brandenburg University of Technology (BTU)CottbusGermany

Personalised recommendations