Climate Dynamics

, Volume 42, Issue 5–6, pp 1383–1404 | Cite as

Transient twenty-first century changes in daily-scale temperature extremes in the United States

Article

Abstract

A key question for climate mitigation and adaptation decisions is how quickly significant changes in temperature extremes will emerge as greenhouse gas concentrations increase, and whether that emergence will be uniform between hot and cold extremes and across different geographic areas. We use a high-resolution, multi-member ensemble climate model experiment over the United States (U.S.) to investigate the transient response of the annual frequency, duration and magnitude of 8 daily-scale extreme temperature indices during the twenty-first century of the A1B emissions scenario. We evaluate the time of emergence of a permanent exceedance (PE) above the colder part of the historical (1980–2009) extremes distribution, and the time of emergence of a new norm (NN) centered on the historical maxima (for hot extremes) or minima (for cold extremes). We find that during the twenty-first century, hot extremes permanently exceed the historical distribution’s colder half over large areas of the U.S., and that the hot extremes distribution also becomes centered on or above the historical distribution’s maxima. The changes are particularly robust for the exceedance of the annual 95th percentile of daily maximum temperature over the West and the Northeast (with the earliest emergence of a PE by 2030 and of a NN by 2040), for warm days over the Southwest (with the earliest emergence of a PE by 2020 and of a NN by 2030), and tropical nights over the eastern U.S. (with the earliest emergence of a PE by 2020 and of a NN by 2030). Conversely, no widespread emergence of a PE or a NN is found for most cold extremes. Exceptions include frost day frequency (with a widespread emergence of a PE below the historical median frequency by 2030 and of a NN by 2040 over the western U.S.), and cold night frequency (with an emergence of a PE below the historical median frequency by 2040 and of a NN by 2060 in virtually the entire U.S.). Our analysis implies a transition over the next half century to a climate of recently unprecedented heat stress in many parts of the U.S., along with cold extremes that, although less frequent, remain at times as long and as severe as are found in the current climate.

Keywords

Hot extreme Cold extreme Regional climate model RegCM3 Transient change Time of emergence (TOE) 

References

  1. Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res. doi:10.1029/2005JD006290 Google Scholar
  2. Anderson BT (2011) Near-term increase in frequency of seasonal temperature extremes prior to the 2°C global warming target. Clim Change 108:581–589. doi:10.1007/s10584-011-0196-4 CrossRefGoogle Scholar
  3. Anderson GB, Bell ML (2009) Weather-related mortality: how heat, cold and heat waves affect mortality in the United States. Epidemiology 20:205–213. doi:10.1097/EDE.0b013e318190ee08 CrossRefGoogle Scholar
  4. Ashfaq M, Bowling LC, Cherkauer K et al (2010) Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: a case study of the United States. J Geophys Res. doi:10.1029/2009JD012965 Google Scholar
  5. Ballester J, Rodó X, Giorgi F (2009) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi:10.1007/s00382-009-0641-5 CrossRefGoogle Scholar
  6. Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202. doi:10.1093/epirev/mxf007 CrossRefGoogle Scholar
  7. Brown SJ, Caesar J, Ferro CAT (2008) Global changes in extreme daily temperature since 1950. J Geophys Res 113:1–11. doi:10.1029/2006JD008091 Google Scholar
  8. Butler EE, Huybers P (2013) Adaptation of US maize to temperature variations. Nat Clim Ch 3:68–72. doi:10.1038/nclimate1585 CrossRefGoogle Scholar
  9. Cattiaux J, Vautard R, Cassou C et al (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:1–6. doi:10.1029/2010GL044613 CrossRefGoogle Scholar
  10. CH2011 (2011) Swiss climate change scenarios CH2011. Zurich, SwitzerlandGoogle Scholar
  11. Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24:1922–1930. doi:10.1175/2011JCLI4150.1 CrossRefGoogle Scholar
  12. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972 CrossRefGoogle Scholar
  13. Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435. doi:10.1175/JCLI3877.1 CrossRefGoogle Scholar
  14. Clark RT, Murphy JM, Brown SJ (2010) Do global warming targets limit heatwave risk? Geophys Res Lett 37:1–5. doi:10.1029/2010GL043898 CrossRefGoogle Scholar
  15. Cohen JL, Furtado JC, Barlow MA et al (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. doi:10.1088/1748-9326/7/1/014007 CrossRefGoogle Scholar
  16. Collins WD, Bitz CM, Blackmon ML et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143. doi:10.1175/JCLI3761.1 CrossRefGoogle Scholar
  17. Daly C, Taylor G, Gibson W (1997) The prism approach to mapping precipitation and temperature, pp 1–4Google Scholar
  18. Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333. doi:10.1126/science.1188566 CrossRefGoogle Scholar
  19. De Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:1–6. doi:10.1029/2011GL050665 Google Scholar
  20. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  21. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672. doi:10.1073/pnas.0709472105 CrossRefGoogle Scholar
  22. Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett. doi:10.1029/2010GL043888 Google Scholar
  23. Diffenbaugh NS, Scherer M (2011) Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim Change 107:615–624. doi:10.1007/s10584-011-0112-y CrossRefGoogle Scholar
  24. Diffenbaugh NS, Scherer M (2012) Using climate impacts indicators to evaluate climate model ensembles: temperature suitability of premium winegrape cultivation in the United States. Clim Dyn. doi:10.1007/s00382-012-1377-1 Google Scholar
  25. Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci 102:15774–15778. doi:10.1073/pnas.0506042102 CrossRefGoogle Scholar
  26. Diffenbaugh NS, Giorgi F, Raymond L, Bi X (2007) Indicators of 21st century socioclimatic exposure. Proc Natl Acad Sci 104:20195–20198CrossRefGoogle Scholar
  27. Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:044007. doi:10.1088/1748-9326/3/4/044007 CrossRefGoogle Scholar
  28. Diffenbaugh NS, Ashfaq M, Scherer M (2011a) Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States. J Geophys Res 116:1–16. doi:10.1029/2011JD016458 Google Scholar
  29. Diffenbaugh NS, White MA, Jones GV, Ashfaq M (2011b) Climate adaptation wedges: a case study of premium wine in the western United States. Environ Res Lett 6:024024. doi:10.1088/1748-9326/6/2/024024 CrossRefGoogle Scholar
  30. Diffenbaugh NS, Hertel TW, Scherer M, Verma M (2012) Response of corn markets to climate volatility under alternative energy futures. Nat Clim Ch 2:1–5. doi:10.1038/nclimate1491 CrossRefGoogle Scholar
  31. Easterling DR (2002) Recent change in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332Google Scholar
  32. Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  33. Favre A, Gershunov A (2009) North Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes. Clim Dyn 32:969–987. doi:10.1007/s00382-008-0417-3 CrossRefGoogle Scholar
  34. Filleul L, Larrieu S, Lefranc A (2011) Extreme temperatures and mortality. In: Health E-CJONBT-E of E (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 693–699Google Scholar
  35. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866 CrossRefGoogle Scholar
  36. Fischer EM, Seneviratne SI, Vidale PL et al (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099. doi:10.1175/JCLI4288.1 CrossRefGoogle Scholar
  37. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051000 Google Scholar
  38. Francis JA, Chan W, Leathers DJ et al (2009) Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Lett 36:1–5. doi:10.1029/2009GL037274 Google Scholar
  39. Frich P, Alexander LV, Della-Marta P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193 CrossRefGoogle Scholar
  40. Garcíca-Herrera R, Díaz J, Trigo RM et al (2010) A review of the European summer heat wave of 2003. Critical Rev Environ Sci Technol 40:267–306. doi:10.1080/10643380802238137 CrossRefGoogle Scholar
  41. Gershunov A, Douville H (2008) Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In: Diaz HF, Murnane RJ (ed) Climate extremes and society. Cambridge University Press, Cambridge, pp 74–98Google Scholar
  42. Giorgi F, Bi X (2009) Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys Res Lett 36:1–6. doi:10.1029/2009GL037593 Google Scholar
  43. Giorgi F, Diffenbaugh NS, Gao XJ et al (2008) The regional climate change hyper-matrix framework. Eos Trans Am Geophys Union 89:445. doi:10.1029/2008EO450001 Google Scholar
  44. Giorgi F, Im E-S, Coppola E et al (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi:10.1175/2011JCLI3979.1 CrossRefGoogle Scholar
  45. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  46. Hawkins E, Sutton R (2012) Time of emergence of climate signals. Geophys Res Lett. doi:10.1029/2011GL050087 Google Scholar
  47. Huynen MMTE, Martens P, Schram D et al (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109:463–470CrossRefGoogle Scholar
  48. IPCC Working Groups I and II (2011) IPCC SREX summary for policymakers. Text 1–29Google Scholar
  49. Joshi M, Hawkins E, Sutton R et al (2011) Projections of when temperature change will exceed 2°C above pre-industrial levels. Nat Clim Ch 1:407–412. doi:10.1038/nclimate1261 CrossRefGoogle Scholar
  50. Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, CambridgeGoogle Scholar
  51. Klein Tank A, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Report, World Climate Data and Monitoring Programme (WCDMP) series, WCDMP-72Google Scholar
  52. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett. doi:10.1029/2011GL047103 Google Scholar
  53. Kunkel KE, Liang X-Z, Zhu J (2010) Regional climate model projections and uncertainties of U.S. Summer Heat Waves. J Clim 23:4447–4458. doi:10.1175/2010JCLI3349.1 CrossRefGoogle Scholar
  54. Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8:4623–4648. doi:10.3390/ijerph8124623 CrossRefGoogle Scholar
  55. Mahlstein I, Knutti R, Solomon S, Portmann RW (2011) Early onset of significant local warming in low latitude countries. Environ Res Lett 6:034009. doi:10.1088/1748-9326/6/3/034009 CrossRefGoogle Scholar
  56. Mearns LO, Gutowski W, Jones R et al (2009) A regional climate change assessment program for North America. Eos Trans Am Geophys Union 90:311. doi:10.1029/2009EO360002 Google Scholar
  57. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704 CrossRefGoogle Scholar
  58. Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twenty-first century climate. Clim Dyn 23:495–511. doi:10.1007/s00382-004-0442-9 CrossRefGoogle Scholar
  59. Meehl GA, Washington WM, Santer BD et al (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616. doi:10.1175/JCLI3746.1 CrossRefGoogle Scholar
  60. Meehl GA, Covey C, Taylor KE et al (2007a) THE WCRP CMIP3 multimodel dataset: a New Era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  61. Meehl GA, Stocker TF, Collins WD et al (2007b) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  62. Meehl GA, Stocker TF, Collins WD et al (2007c) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  63. Morak S, Hegerl GC, Kenyon J (2011) Detectable regional changes in the number of warm nights. Geophys Res Lett. doi:10.1029/2011GL048531 Google Scholar
  64. Nakicenovic N, Davidson O, Davis G et al (2000) Special report on emissions scenarios, intergovernmental panel on climate change special reports on climate change. Cambridge University Press, CambridgeGoogle Scholar
  65. Orlowsky B, Seneviratne SI (2011) Global changes in extreme events: regional and seasonal dimension. Clim Change. doi:10.1007/s10584-011-0122-9 Google Scholar
  66. Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836 CrossRefGoogle Scholar
  67. Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  68. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188 CrossRefGoogle Scholar
  69. Portmann RW, Solomon S, Hegerl GC (2009) Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci 106:7324–7329. doi:10.1073/pnas.0808533106 CrossRefGoogle Scholar
  70. Räisänen J, Ylhäisi JS (2011) Cold months in a warming climate. Geophys Res Lett 38:1–6. doi:10.1029/2011GL049758 Google Scholar
  71. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Ch 2:248–253CrossRefGoogle Scholar
  72. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci. doi:10.1073/pnas.0906865106
  73. Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107:9552–9555. doi:10.1073/pnas.0913352107 CrossRefGoogle Scholar
  74. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Global Environ Change 16:282–292. doi:10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  75. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature. doi:10.1029/2001JB001029 Google Scholar
  76. Stott PA, Gillett NP, Hegerl GC et al (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change. doi:10.1002/wcc.34
  77. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  78. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2007) Going to the extremes. Clim Change 82:233–234CrossRefGoogle Scholar
  79. UNFCCC (2010) Report of the conference of the parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009, pp 1–43Google Scholar
  80. Van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project, pp 1–160Google Scholar
  81. Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147. doi:10.1002/joc.1301 CrossRefGoogle Scholar
  82. Walker M, Diffenbaugh NS (2009) Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States. Clim Dyn 33:1131–1147. doi:10.1007/s00382-009-0603-y CrossRefGoogle Scholar
  83. White MA, Diffenbaugh NS, Jones GV et al (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci. doi:10.1073/pnas.0603230103 Google Scholar
  84. Williams J, Jackson S, Kutzbach J (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci. doi:10.1073/pnas.0606292104 Google Scholar
  85. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrological implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 189–216. doi:10.1023/B:CLIM.0000013685.99609.9e
  86. Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24:881–892. doi:10.1175/2010JCLI3908.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Environmental Earth System Science, Woods Institute for the EnvironmentStanford UniversityStanfordUSA
  2. 2.Department of Earth and Atmospheric Sciences, Purdue Climate Change Research CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations