Climate Dynamics

, Volume 41, Issue 3–4, pp 551–571 | Cite as

Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century

  • M. RojasEmail author
  • L. Z. Li
  • M. Kanakidou
  • N. Hatzianastassiou
  • G. Seze
  • H. Le Treut


The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere–ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961–1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region’s weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021–2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10–20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.


Mediterranean Winter weather regimes Climate change Coupled regional atmosphere–ocean simulation 



Support by the European Union Integrated Project -036961, Climate Change and Impact Research: the Mediterranean Environment (CIRCE) is acknowledged. This work was partly supported by the French ANR project REMEMBER (ANR-12-SENV-0001).

Supplementary material

382_2013_1823_MOESM1_ESM.pdf (533 kb)
Supplementary material 1 (PDF 533 kb)


  1. Alcamo J et al (2007) Europe. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden and C. E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 541–580Google Scholar
  2. Alpert P et al (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 149–177Google Scholar
  3. Beaulant AL, Joly B, Nuissier O, Somot S, Ducrocq V, Joly A, Sevault F, Deque M, Ricard D (2011) Statistico-dynamical downscaling for Mediterranean heavy precipitation. Q J R Meteorol Soc 137:736–748CrossRefGoogle Scholar
  4. Christensen JH et al (2007) Regional climate projections. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NYGoogle Scholar
  5. Coppola E, Giorgi F, Rauscher SA, Piani C (2010) Model weighting based on mesoscale structures in precipitation and temperature in an ensemble of regional climate models. Clim Res 44:121–134. doi: 10.3354/cr0094 CrossRefGoogle Scholar
  6. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802CrossRefGoogle Scholar
  7. Déqué M, Somot S, Sanchez-Gomez E, Goodess C, Jacob D, Lenderink D, Christensen OB (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi: 10.1007/s00382-011-1053-x CrossRefGoogle Scholar
  8. Driouech F, Déqué M, Sánchez-Gómez E (2010) Weather regimes—Moroccan precipitation link in a regional climate change simulation. Global Planet Change 72(2010):1–10. doi: 10.1016/j.gloplacha.2010.03.004 CrossRefGoogle Scholar
  9. Fontaine B, Gaetani M, Ullmann A, Roucou P (2011) Time evolution of observed July-September sea surface temperature-Sahel climate teleconnection with removed quasi-global effect (1900–2008). J Geophys Res 116:D04105. doi: 10.1029/2010JD014843 CrossRefGoogle Scholar
  10. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707CrossRefGoogle Scholar
  11. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  12. Hatzianastassiou N, Gkikas A, Mihalopoulos N, Torres O, Katsoulis BD (2009) Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data. J Geophys Res 114:D24202. doi: 10.1029/2009JD011982 CrossRefGoogle Scholar
  13. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201
  14. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JD, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix J, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi: 10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  15. Hurrell J (1996) Influence of variations in extratropical wintertime teleconnections on Norhtern Hemisphere temperature. Geo Res Lett 23(6):665–668CrossRefGoogle Scholar
  16. Jones PD, Lister DH (2009) The influence of the circulation on surface temperature and precipitation patterns over Europe. Clim Past 5:259–267CrossRefGoogle Scholar
  17. L’Hévéder B, Li L, Sevault F, Somot S (2012) Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Clim Dyn. doi: 10.1007/s00382-012-1527-5
  18. Li Z (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  19. Lionello P et al (2006a) The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 1–26Google Scholar
  20. Lionello P et al (2006b) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 325–372Google Scholar
  21. Luterbacher J et al (2006) Mediterranean climate variability over the last centuries. A review. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 27–148Google Scholar
  22. MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. in: Proceedings of 5th Berkeley symposium on mathematical statistics and probability. University of California Press. pp. 281–297. MR0214227. Zbl 0214.46201.
  23. Mariotti A, Zeng N, Yoon JH, Artale V, Navarra A, Alpert P, Li L (2008) Mediterranean water cycle changes: transition to drier twenty-first century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 3 044001. doi: 10.1088/1748-9326/3/4/044001
  24. Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26. doi: 10.1007/s00382-009-0640-6 CrossRefGoogle Scholar
  25. MEDATLAS (1997) Mediterranean hydrological Atlas on CD- ROM. IFREMER (Ed.), published by IFREMER/DITI/IDT on behalf of the MEDATLAS consortium under contract MAS2-CT93-0074Google Scholar
  26. Michelangeli P, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi-stationarity. J Atmos Sci 52:1237–1256CrossRefGoogle Scholar
  27. Moron V, Plaut G (2003) The impact of El Niño southern oscillation upon weather regimes over Europe and the North Atlantic boreal winter. Int J Climatol 23:363–379CrossRefGoogle Scholar
  28. Nuissier O, Joly B, Joly A, Ducrocq V, Arbogast P (2011) A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France. Q J R Meteorol Soc 137:1812–1827CrossRefGoogle Scholar
  29. Plaut G, Simmonnet E (2001) Large-scale circulation classification, weather regimes, and local climate over France, the Alps and Western Europe. Clim Res 17:303–324Google Scholar
  30. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2002). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670
  31. Rojas M (2006) Multiple nested regional climate simulations for Southern South America: sensitivity to model resolution. Mon Weather Rev 134:2208–2223CrossRefGoogle Scholar
  32. Rossow WB, Garder LC (1993) Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J Clim 6:2341–2369CrossRefGoogle Scholar
  33. Rossow WB, Golea V (2013) Factors that might affect ISCCP determinations of long-term cloud cover changes. J Climate (submitted)Google Scholar
  34. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2288CrossRefGoogle Scholar
  35. Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP) Documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological OrganizationGoogle Scholar
  36. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput Appl Math 20:53–65. doi: 10.1016/0377-0427(87)90125-7
  37. Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50CrossRefGoogle Scholar
  38. Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea : NEMOMED8 user’s guide, Note 107. Groupe de Météorol. de Grande Echelle et Climat, CNRM, ToulouseGoogle Scholar
  39. Solman SA, Menéndez CG (2003) Weather regimes in the South American sector and neighbouring oceans during winter. Clim Dyn 21(1):91–104Google Scholar
  40. Straus DM, Molteni F (2004) Circulation regimes and SST forcing: results from large GCM ensembles. J Climate 17:1641–1656CrossRefGoogle Scholar
  41. Stubenrauch CJ, Rossow WB, Kinne S, Ackerman S, Cesana G, Chepfer H, Getzewich B, Di Girolamo L, Guignard A, Heidinger A, Maddux B, Menzel P, Minnis P, Pearl C, Platnick S, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S, Zhao G (2012) Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bulletin of the American Meteorological Society. doi: 10.1175/BAMS-D-12-00117
  42. Trigo R et al (2006) Relations between variability in the Mediterranean region and mid-latitude variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 179–226Google Scholar
  43. Ulbrich U et al (2006) The Mediterranean climate change under global warming. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 398–415Google Scholar
  44. Ullmann A, Moron V (2008) Weather regimes and sea surge variations over the Gulf of Lions (French Mediterranean coast) during the 20th century. Int J Climatol 28:159–171. doi: 10.1002/joc.1527 CrossRefGoogle Scholar
  45. Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  46. Valcke S (2006) OASIS3 user guide (oasis3_prism_2-5). PRISM support initiative report no 3. CERFACS, Toulouse, France 64 ppGoogle Scholar
  47. Vautard R (1990) Multiple weather regimes over the North-Atlantic—analysis of precursors and successors. Mon Wea Rev 118:2056–2081. doi: 10.1175/1520-0493 CrossRefGoogle Scholar
  48. Vrac M, Yiou P (2010) Weather regimes designed for local precipitation modeling: application to the Mediterranean basin. J Geophys Res 115:D12103. doi: 10.1029/2009JD012871 CrossRefGoogle Scholar
  49. Xoplaki E, González-Rouco FJ, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability. Influence of large-scale dynamics. Clim Dyn 23:63–78CrossRefGoogle Scholar
  50. Yiou P, Ribereau P, Naveau P, Nogaj M, Brázdil R (2006) Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrol Sci J 51(5):930–945. doi: 10.1623/hysj.51.5.930 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Rojas
    • 1
    • 2
    Email author
  • L. Z. Li
    • 2
  • M. Kanakidou
    • 3
  • N. Hatzianastassiou
    • 4
  • G. Seze
    • 2
  • H. Le Treut
    • 2
  1. 1.Department of GeophysicsUniversity of ChileSantiagoChile
  2. 2.LMD/IPSL/CNRSParis Cedex 05France
  3. 3.Environmental Chemical Processes Laboratory, Chemistry DepartmentUniversity of CreteHeraklionGreece
  4. 4.Laboratory of Meteorology, Physics DepartmentUniversity of IoanninaIoanninaGreece

Personalised recommendations