Climate Dynamics

, Volume 41, Issue 2, pp 227–241 | Cite as

Properties of adjoint sea ice sensitivities to atmospheric forcing and implications for the causes of the long term trend of Arctic sea ice

  • Nikolay V. Koldunov
  • Armin Köhl
  • Detlef Stammer
Article

Abstract

Based on adjoint sensitivities of the coupled Massachusetts Institute of Technology ocean–sea ice circulation model, the potential influence of thermodynamic atmospheric forcing on the interannual variability of the September sea ice area (AREA) and volume (VOLUME) in the Arctic is investigated for the three periods 1980–1989, 1990–1999 and 2000–2009. Sensitivities suggest that only large forcing anomalies prior to the spring melting onset in May can influence the September sea ice characteristics while even small changes in the atmospheric variables during subsequent months can significantly influence September sea ice state. Specifically, AREA close to the ice edge in the Arctic seas is highly sensitive to thermodynamic atmospheric forcing changes from June to July. In contrast, VOLUME is highly sensitive to atmospheric temperature changes occurring during the same period over the central parts of the Arctic Ocean. A comparison of the sea ice conditions and sensitivities during three different periods reveals that, due to the strong decline of sea ice concentration and sea ice thickness, sea ice area became substantially more sensitive to the same amplitude thermodynamic atmospheric forcing anomalies during 2000–2009 relative to the earlier periods. To obtain a quantitative estimate of changes that can be expected from existing atmospheric trends, adjoint sensitivities are multiplied by monthly temperature differences between 1980s and two following decades. Strongest contributions of surface atmospheric temperature differences to AREA and VOLUME changes are observed during May and September. The strongest contribution from the downward long-wave heat flux to AREA changes occurs in September and to VOLUME changes in July–August. About 62 % of the AREA decrease simulated by the model can be explained by summing all contributions to the thermodynamic atmospheric forcing. The changing sea ice state (sensitivity) is found to enhance the decline and accounts for about one third of the explained reduction. For the VOLUME decrease, the explained fraction of the decrease is only about 37 %.

References

  1. Adcroft A, Campin JM, Dutkiewicz S, Evangelinos C, Ferreira D, Forget G, Fox-Kemper B, Heimbach P, Hill C, Hill E, Hill H, Jahn O, Losch M, Marshall J, Maze G, Menemenlis D, Molod A (2010) MITgcm user manual. Techical report, MIT EAPSGoogle Scholar
  2. Alexeev VA, Jackson CH (2012) Polar amplification: is atmospheric heat transport important? pp 1–15. doi:10.1007/s00382-012-1601-z
  3. Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB (2012) Quantifying the influence of atlantic heat on barents sea ice variability and retreat*. J Clim 25(13):4736–4743. doi:10.1175/JCLI-D-11-00466.1 CrossRefGoogle Scholar
  4. Blanchard-Wrigglesworth E, Bitz CM, Holland MM (2011) Influence of initial conditions and climate forcing on predicting arctic sea ice. Geophys Res Lett 38(18):L18503+. doi:10.1029/2011GL048807 CrossRefGoogle Scholar
  5. Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, Antonov J (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int J Climatol 25(7):931–945. doi:10.1002/joc.1173 Google Scholar
  6. Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. Technical report, Boulder, Colorado USAGoogle Scholar
  7. Chevallier M, Salas-Mélia D (2011) The role of sea ice thickness distribution in the arctic sea ice potential predictability: a diagnostic approach with a coupled GCM. J Clim 25(8):3025–3038. doi:10.1175/JCLI-D-11-00209.1 CrossRefGoogle Scholar
  8. Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys Res Lett 35:L02504+. doi:10.1029/2007GL032023 CrossRefGoogle Scholar
  9. Drobot SD, Maslanik JA (2003) Interannual variability in summer Beaufort sea ice conditions: relationship to winter and summer surface and atmospheric variability. J Geophys Res 108(C7). doi:10.1029/2002JC001537
  10. Eisenman I, Wettlaufer JS (2009) Nonlinear threshold behavior during the loss of arctic sea ice. Proc Natl Acad Sci 106(1):28–32. doi:10.1073/pnas.0806887106 CrossRefGoogle Scholar
  11. Errico RM (1997) What is an adjoint model. Bull Am Meteorol Soc 78(11):2577–2591CrossRefGoogle Scholar
  12. Fenty I, Heimbach P (2012) Coupled sea Ice–Ocean state estimation in the labrador sea and baffin bay. J Phys Oceanogr. doi:10.1175/JPO-D-12-065.1
  13. Fenty I, Heimbach P (2012b) Hydrographic preconditioning for seasonal sea ice anomalies in the labrador sea. J Phys Oceanogr. doi:10.1175/JPO-D-12-064.1
  14. Giering R, Kaminski T (1998) Recipes for adjoint code construction. ACM Trans Math Softw 24(4):437–474. doi:10.1145/293686.293695 CrossRefGoogle Scholar
  15. Giering R, Kaminski T, Slawig T (2005) Generating efficient derivative code with TAF adjoint and tangent linear Euler flow around an airfoil. Future Gener Comput Syst 21(8):1345–1355. doi:10.1016/j.future.2004.11.003 CrossRefGoogle Scholar
  16. Gorodetskaya IV, Tremblay LB, Liepert B, Cane MA, Cullather RI (2008) The influence of cloud and surface properties on the arctic ocean shortwave radiation budget in coupled models*. J Clim 21(5):866–882. doi:10.1175/2007JCLI1614.1 CrossRefGoogle Scholar
  17. Gregory JM, Stott PA, Cresswell DJ, Rayner NA, Gordon C, Sexton DMH (2002) Recent and future changes in arctic sea ice simulated by the HadCM3 AOGCM. Geophys Res Lett 29(24):28-1–28-4. doi:10.1029/2001GL014575 Google Scholar
  18. Heimbach P, Menemenlis D, Losch M, Campin JM, Hill C (2010) On the formulation of sea-ice models. Part 2: lessons from multi-year adjoint seaice export sensitivities through the Canadian Arctic Archipelago. Ocean Model 33(1–2)145–158. doi:10.1016/j.ocemod.2010.02.002 CrossRefGoogle Scholar
  19. Hibler WD (1979) Dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4)Google Scholar
  20. Hibler WD (1980) Modeling a variable thickness sea ice cover. Mon Weather Rev 108(12):1943–1973CrossRefGoogle Scholar
  21. Hibler WD (1984) The role of sea ice dynamics in modeling CO2 increases. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, Geophysical Monograph, vol 29, AGU, Washington, D.C., pp 238–253Google Scholar
  22. Holland M, Bailey D, Vavrus S (2010) Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Clim Dyn. doi:10.1007/s00382-010-0792-4
  23. Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of arctic sea ice thickness simulated by arctic ocean model intercomparison project models. J Geophys Res 117:C00D13+. doi:10.1029/2011JC007257 Google Scholar
  24. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  25. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M (2009) Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys Res Lett 36(3):L03707+. doi:10.1029/2008GL036323 CrossRefGoogle Scholar
  26. Kay JE, Holland MM, Bitz CM, Blanchard-Wrigglesworth E, Gettelman A, Conley A, Bailey D (2012) The influence of local feedbacks and northward heat transport on the equilibrium arctic climate response to increased greenhouse gas forcing. J Clim 25(16):5433–5450. doi:10.1175/JCLI-D-11-00622.1 CrossRefGoogle Scholar
  27. Köberle C, Gerdes R (2003) Mechanisms determining the variability of Arctic sea ice conditions and export. J Clim 16(17):2843–2858CrossRefGoogle Scholar
  28. Koenigk T, Mikolajewicz U (2009) Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Clim Dyn 32(6):783–798. doi:10.1007/s00382-008-0419-1 CrossRefGoogle Scholar
  29. Köhl A, Stammer D (2004) Optimal observations for variational data assimilation. J Phys Oceanogr 34(3):529–542. doi:10.1175/2513.1 CrossRefGoogle Scholar
  30. Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38(9):1913–1930. doi:10.1175/2008JPO3775.1 CrossRefGoogle Scholar
  31. Kwok R (2008) Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys Res Lett 35:L03504+. doi:10.1029/2007GL032692 CrossRefGoogle Scholar
  32. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett 36(15):L15501+. doi:10.1029/2009GL039035 CrossRefGoogle Scholar
  33. Losch M, Menemenlis D, Campin JM, Heimbach P, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33(1–2):129–144. doi:10.1016/j.ocemod.2009.12.008 CrossRefGoogle Scholar
  34. Makshtas AP, Shoutilin SV, Andreas EL (2003) Possible dynamic and thermal causes for the recent decrease in sea ice in the Arctic Basin. J Geophys Res 108(C7). doi:10.1029/2001JC000878
  35. Marotzke J, Giering R, Zhang KQ, Stammer D, Hill C, Lee T (1999) Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J Geophys Res [Atmos] 104(C12):29529–29547CrossRefGoogle Scholar
  36. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res Oceans 102(C3):5753–5766. doi:10.1029/96JC02775 CrossRefGoogle Scholar
  37. Marshall J, Hill C, Perelman L, Adcroft A (1997) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res Oceans 102(C3):5753–5752. doi:10.1029/96JC02776 Google Scholar
  38. Maslanik J, Stroeve J, Fowler C, Emery W (2011) Distribution and trends in arctic sea ice age through spring 2011. Geophys Res Lett 38(13):L13502+. doi:10.1029/2011GL047735 CrossRefGoogle Scholar
  39. Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice–ocean simulation with optimized model parameters: approach and assessment. J Geophys Res 116(C4):C04025+. doi:10.1029/2010JC006573 CrossRefGoogle Scholar
  40. Notz D (2009) The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20590–20595. doi:10.1073/pnas.0902356106 CrossRefGoogle Scholar
  41. Notz D, Marotzke J (2012) Observations reveal external driver for arctic sea-ice retreat. Geophys Res Lett 39(8):L08502+. doi:10.1029/2012GL051094 CrossRefGoogle Scholar
  42. Ogi M, Yamazaki K, Wallace JM (2010) Influence of winter and summer surface wind anomalies on summer arctic sea ice extent. Geophys Res Lett 37(7):L07701+. doi:10.1029/2009GL042356 CrossRefGoogle Scholar
  43. Persson, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10):SHE 21-1–SHE 21-35. doi:10.1029/2000JC000705
  44. Polyakov IV, Timokhov LA, Alexeev VA, Bacon S, Dmitrenko IA, Fortier L, Frolov IE, Gascard JC, Hansen E, Ivanov VV, Laxon S, Mauritzen C, Perovich D, Shimada K, Simmons HL, Sokolov VT, Steele M, Toole J (2010) Arctic ocean warming contributes to reduced polar ice cap. J Phys Oceanogr 40(12):2743–2756. doi:10.1175/2010JPO4339.1 CrossRefGoogle Scholar
  45. Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic Oscillation. J Clim 15(18):2648–2663CrossRefGoogle Scholar
  46. Rothrock DA, Zhang J (2005) Arctic Ocean sea ice volume: what explains its recent depletion. J Geophys Res C Oceans 110(1):1–10. doi:10.1029/2004JC002282 Google Scholar
  47. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389CrossRefGoogle Scholar
  48. Semtner AJ (1984) On modelling the seasonal thermodynamic cycle of sea ice in studies of climatic change. Clim Chang 6(1):27–37. doi:10.1007/BF00141666 CrossRefGoogle Scholar
  49. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Sci Agric 315(5818):1533–1536CrossRefGoogle Scholar
  50. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific ocean inflow: influence on catastrophic reduction of sea ice cover in the arctic ocean. Geophys Res Lett 33(8). doi:10.1029/2005GL025624
  51. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  52. Stammer D (2005) Adjusting internal model errors through ocean state estimation. J Phys Oceanogr 35(6):1143–1153. doi:10.1175/JPO2733.1 CrossRefGoogle Scholar
  53. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2002) Global ocean circulation during 1992-1997, estimated from ocean observations and a general circulation model. J Geophys Res (Oceans) 107(C9):1. doi:10.1029/2001JC000888 CrossRefGoogle Scholar
  54. Stammer D, Köhl A, Wunsch C (2007) Impact of accurate geoid fields on estimates of the ocean circulation. J Atmos Oceanic Technol 24(8):1464–1478. doi:10.1175/JTECH2044.1 CrossRefGoogle Scholar
  55. Stammer D, Park S, Köhl A, Lukas R, Santiago-Mandujano F (2008) Causes for large-scale hydrographic changes at the Hawaii ocean time series station. J Phys Oceanogr 38(9):1931–1948. doi:10.1175/2008JPO3751.1 CrossRefGoogle Scholar
  56. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14(9):2079–2087CrossRefGoogle Scholar
  57. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110(3):1005–1027. doi:10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  58. Tietsche S, Notz D, Jungclaus JH, Marotzke J (2011) Recovery mechanisms of arctic summer sea ice. Geophys Res Lett 38(2):L02,707+. doi:10.1029/2010GL045698 CrossRefGoogle Scholar
  59. Vinnikov KY, Robock A, Stouffer RJ, Walsh JE, Parkinson CL, Cavalieri DJ, Mitchell JFB, Garrett D, Zakharov VF (1999) Global warming and northern hemisphere sea ice extent. Science 286(5446):1934–1937. doi:10.1126/science.286.5446.1934 CrossRefGoogle Scholar
  60. Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. J Clim 9(2):480–486CrossRefGoogle Scholar
  61. Wunsch C (2006) Discrete inverse and state estimation problems: with geophysical fluid applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Zhang J, Hibler WD (1997) On an efficient numerical method for modeling sea ice dynamics. J Geophys Res Oceans 102(C4):null+. doi:10.1029/96JC03744
  63. Zhang J, Hibler WD, Steele M, Rothrock DA (1998) Arctic ice–ocean modeling with and without climate restoring. J Phys Oceanogr 28(2):191–217CrossRefGoogle Scholar
  64. Zhang J, Rothrock D, Steele M (2000) Recent changes in Arctic sea ice: the interplay between ice dynamics and thermodynamics. J Clim 13(17):3099–3114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikolay V. Koldunov
    • 1
  • Armin Köhl
    • 1
  • Detlef Stammer
    • 1
  1. 1.Institut für Meereskunde, KlimaCampusUniversität HamburgHamburgGermany

Personalised recommendations