Climate Dynamics

, Volume 42, Issue 5–6, pp 1449–1468 | Cite as

Global seasonal climate predictability in a two tiered forecast system. Part II: boreal winter and spring seasons

  • Haiqin Li
  • Vasubandhu Misra


We examine the Florida Climate Institute–Florida State University Seasonal Hindcast (FISH50) skill at a relatively high (50 km grid) resolution two tiered Atmospheric General Circulation Model (AGCM) for boreal winter and spring seasons at zero and one season lead respectively. The AGCM in FISH50 is forced with bias corrected forecast sea surface temperature averaged from two dynamical coupled ocean–atmosphere models. The comparison of the hindcast skills of precipitation and surface temperature from FISH50 with the coupled ocean–atmosphere models reveals that the probabilistic skill is nearly comparable in the two types of forecast systems (with some improvements in FISH50 outside of the global tropics). Furthermore the drop in skill in going from zero lead (boreal winter) to one season lead (boreal spring) is also similar in FISH50 and the coupled ocean–atmosphere models. Both the forecast systems also show that surface temperature hindcasts have more skill than the precipitation hindcasts and that land based precipitation hindcasts have slightly lower skill than the corresponding hindcasts over the ocean.


ENSO Seasonal predictability  Forecast skill 



This paper is dedicated to the memory of Dr. Masao Kanamitsu, without whose pioneering development of the FISH50 AGCM, this work would not have been possible. We also acknowledge the help of Dr. Zhaohua Wu who provided us the methodology and the data for the bias corrected SST (SSTOLF). We thank Mr. Steven DiNapoli for making Figs. 14, 15, 16. This work was supported by grants from NOAA (NA12OAR4310078, NA10OAR4310215, NA11OAR4310110), USGS (06HQGR0125), and USDA (027865). All computations for this paper were done on the computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE) under TG-ATM120017 and TG-ATM120010.


  1. AchutaRao KM, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn. doi: 10.1007/s00382-006-0119-7 Google Scholar
  2. Oleson KW et al (2004) Technical description of the Community Land Model (CLM). Tech. Rep. NCAR/TN-461 + STR, NCAR, Boulder, CO, 174 pGoogle Scholar
  3. Kirtman BP et al (2013) The North American multi-model ensemble (NMME) for intra-seasonal to interannual prediction. Bull Am Met Soc (Submitted)Google Scholar
  4. Saha S et al (2013) The NCEP climate forecast system version 2. J Climate (Submitted) Available from
  5. Alpert JC, Kanamitsu M, Caplan PM, Sela JG, White GH, Kalnay E (1988) Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints, Eighth conference on numerical weather prediction, Baltimore, MD. Am Meteor Soc 726–733Google Scholar
  6. Bacmeister J, Pegion PJ, Schubert SD, Suarez MJ (2000) An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. Vol. 17. NASA Tech. Memo. 104606, Goddard Space Flight Center, Greenbelt, MD, 194 pGoogle Scholar
  7. Barnston AG et al (1994) Long lead seasonal forecasts-where do we stand? Bull Am Meteorol Soc 75:2097–2114CrossRefGoogle Scholar
  8. Bengtsson L, Schlese U, Roeckner E (1993) A two-tiered approach to long-range climate forecasting. Science 261:1026–1029CrossRefGoogle Scholar
  9. Berger AL (1978) Long-term variations of daily insolation and quaternary climate changes. J Atmos Sci 25:2362–2367CrossRefGoogle Scholar
  10. Bohn TJ, Sonessa MY, Lettenmaier DP (2010) Seasonal hydrologic forecasting: do multi-model ensemble averages always yield improvements in forecast skill? J Hydrometeorol 11:1358–1372CrossRefGoogle Scholar
  11. Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. In: NASA Technical report series on global modeling and data assimilation, NASA/TM-1994-104606, vol 3. Goddard Space Flight Center, Greenbelt, USAGoogle Scholar
  12. Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by water vapor and ozone. J Atmos Sci 53:1203–1208CrossRefGoogle Scholar
  13. Chun H, Baik J (1998) Momentum flux by thermally induced interval gravity wave and its approximation for large-scale models. J Atmos Sci 55:3299–3310CrossRefGoogle Scholar
  14. Clark MP, Hay LE (2004) Use of medium-range numerical weather prediction model output to produce forecasts of stream-flow. J Hydrometeor 5:15–32CrossRefGoogle Scholar
  15. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boaukabara S, Brown PD (2005) Atmospheric radiative transfter modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transfer 91:233–244CrossRefGoogle Scholar
  16. Collins WD et al (2006a) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J Climate 19:2144–2161CrossRefGoogle Scholar
  17. Collins WD et al (2006b) The community climate system model version 3 (CCSM3). J Climate 19:2122–2143CrossRefGoogle Scholar
  18. DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys Res Lett 39. doi: 10.1029/2012GL051279
  19. DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Wea Rev 133:2972–2995CrossRefGoogle Scholar
  20. Drijfhout SS, Walsteijn FH (1998) Eddy-induced heat transport in a coupled ocean–atmospheric anomaly model. J Phys Oceanogr 28:250–265CrossRefGoogle Scholar
  21. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale 437 Eta model. J Geophys Res 108:8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  22. Goddard L, Mason SJ, Zebiak SE, Ropelewsky CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152CrossRefGoogle Scholar
  23. Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J Geophys Res 99:5551–5568CrossRefGoogle Scholar
  24. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent north Atlantic climate change. Science 292:90–92CrossRefGoogle Scholar
  25. Holtsalag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Climate 6:1825–1842CrossRefGoogle Scholar
  26. Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 122:3–26Google Scholar
  27. Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Wea Rev 126:2599–2620CrossRefGoogle Scholar
  28. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181CrossRefGoogle Scholar
  29. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr. No. 46. Am Meteor Soc 165–170Google Scholar
  30. Kanamitsu M et al (2002a) NCEP dynamical seasonal forecast system 2000. Bull Am Meteor Soc 83:1019–1037CrossRefGoogle Scholar
  31. Kanamitsu M, Ebisuzaki W, Wollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002b) NCEP-DOE AMIP-II reanalysis. Bull Am Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  32. Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Wea Rev 131:2324–2341CrossRefGoogle Scholar
  33. Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Wea Rev 137:2908–2930CrossRefGoogle Scholar
  34. Kirtman BP, Fan Y, Schneider EK (2002) The COLA global coupled and anomaly coupled ocean-atmosphere GCM. J Climate 15:2301–2320CrossRefGoogle Scholar
  35. Koster RD, Suarez MJ, Heiser M (2000) Variance and predictability of precipitation at seasonal-to-interannual time scales. J Hydrometeorol 1:26–64CrossRefGoogle Scholar
  36. Kumar A, Hoerling MP (1995) Prospects and limitations of seasonal atmospheric GCM predictions. Bull Am Meteorol Soc 76:335–345CrossRefGoogle Scholar
  37. LaRow TE (2013) The impact of SST bias correction in north Atlantic hurricane retrospective forecasts. Mon Wea Rev 141:490–498CrossRefGoogle Scholar
  38. Mason SJ, Graham NE (1999) Conditional probabilities, relative operating characteristics, and relative operating levels. Weather Forecast 14:713–725CrossRefGoogle Scholar
  39. Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristics (ROC) and levels (RROL) curves: statistical significance and interpretations. Quart J R Meteorol Soc 128:2145–2166CrossRefGoogle Scholar
  40. McFarlane NA (1987) The effects of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1775–1800CrossRefGoogle Scholar
  41. Misra V, Li H, Wu Z, Dinapoli S (2013) Global seasonal climate predictability in a two tiered forecast system: part I : boreal summer and fall seasons. Clim Dyn. doi: 10.1007/s00382-013-1812-y
  42. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  43. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682Google Scholar
  44. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Wea Rev 120:978–1002CrossRefGoogle Scholar
  45. Moura AD, Hastenrath S (2004) Climate prediction for Brazil’s Nordeste: performance of empirical and numerical modeling methods. J Climate 17:2667–2672CrossRefGoogle Scholar
  46. Palmer TN, Brankovi CC, Richardson DS (2000) A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart J R Meteorol Soc 126:2013–2034CrossRefGoogle Scholar
  47. Ramanathan V, Downey P (1986) A nonisothermal emissivity and absorptivity formulation for water vapor. J Geophys Res 91:8649–8666CrossRefGoogle Scholar
  48. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Nino/Southern Oscillation (ENSO). Mon Wea Rev 114:2352–2362CrossRefGoogle Scholar
  49. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626CrossRefGoogle Scholar
  50. Saha S et al (2006) The NCEP climate forecast system. J Climate 19:3483–3517CrossRefGoogle Scholar
  51. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91:1015–1057CrossRefGoogle Scholar
  52. Shimpo A, Kanamitsu M, Iacobellis SF, Hong S-Y (2008) Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon Wea Rev 136:2557–2575CrossRefGoogle Scholar
  53. Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731CrossRefGoogle Scholar
  54. Shukla J, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay E, Marx L, Palmer T, Paolino DA, Ploshay J, Schubert S, Straus DM, Suarez M, Tribbia J (2000) Dynamical seasonal prediction. Bull Am Meteor Soc 81:2593–2606CrossRefGoogle Scholar
  55. Shukla J, Palmer TN, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Slingo J (2010) Towards a new generation of world climate research and computing facilities. Bull Am Meteor Soc 91:1407–1412CrossRefGoogle Scholar
  56. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296CrossRefGoogle Scholar
  57. Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392:370–373CrossRefGoogle Scholar
  58. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn. doi: 10.1007/s00382-010-0947-3 Google Scholar
  59. Taylor KE, William D, Zwiers F (2000) The SST and seaice boundary conditions for AMIPII simulation. PCMDI report 60.
  60. Tiedtke M (1983) The sensitivity of the time-mean large-scale flow o cumulus convection in the ECMWF model. In: Proceedings ECMWF Workshop on Convection in Large-Scale Models. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom, pp 297–316Google Scholar
  61. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41CrossRefGoogle Scholar
  62. Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical model decomposition method. Adv Adapt Data Anal 1:272–339Google Scholar
  63. Xie and Arkin (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  64. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446CrossRefGoogle Scholar
  65. Zhang S, Harrison MJ. Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Wea Rev 135(10). doi: 10.1175/MWR3466.1
  66. Zhu J, Huang B, Marx L, Kinter JL III, Balmaseda MA, Zhang R-H, Hu Z-Z (2012) Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys Res Lett 39:L09602. doi: 10.1029/2012GL051503 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA
  2. 2.Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Florida Climate Institute, Florida State UniversityTallahasseeUSA

Personalised recommendations